Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem37 Structured version   Visualization version   GIF version

Theorem fourierdlem37 40882
Description: 𝐼 is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem37.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem37.m (𝜑𝑀 ∈ ℕ)
fourierdlem37.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem37.t 𝑇 = (𝐵𝐴)
fourierdlem37.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem37.l 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem37.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem37 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})))
Distinct variable groups:   𝐴,𝑚,𝑝   𝑥,𝐴,𝑦   𝐵,𝑚,𝑝   𝑥,𝐵,𝑦   𝑖,𝐸   𝑦,𝐸   𝑖,𝐿   𝑖,𝑀,𝑚,𝑝   𝑥,𝑀,𝑖   𝑄,𝑖,𝑝   𝑥,𝑇   𝜑,𝑖,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑥,𝑦,𝑖,𝑚,𝑝)   𝑄(𝑥,𝑦,𝑚)   𝑇(𝑦,𝑖,𝑚,𝑝)   𝐸(𝑥,𝑚,𝑝)   𝐼(𝑥,𝑦,𝑖,𝑚,𝑝)   𝐿(𝑥,𝑦,𝑚,𝑝)   𝑀(𝑦)

Proof of Theorem fourierdlem37
StepHypRef Expression
1 ssrab2 3828 . . . 4 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0..^𝑀)
2 ltso 10330 . . . . . 6 < Or ℝ
32a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → < Or ℝ)
4 fzfi 12985 . . . . . . 7 (0...𝑀) ∈ Fin
5 fzossfz 12702 . . . . . . . 8 (0..^𝑀) ⊆ (0...𝑀)
61, 5sstri 3753 . . . . . . 7 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0...𝑀)
7 ssfi 8347 . . . . . . 7 (((0...𝑀) ∈ Fin ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0...𝑀)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin)
84, 6, 7mp2an 710 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin
98a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin)
10 0zd 11601 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
11 fourierdlem37.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
1211nnzd 11693 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1311nngt0d 11276 . . . . . . . . 9 (𝜑 → 0 < 𝑀)
14 fzolb 12690 . . . . . . . . 9 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
1510, 12, 13, 14syl3anbrc 1429 . . . . . . . 8 (𝜑 → 0 ∈ (0..^𝑀))
1615adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 0 ∈ (0..^𝑀))
17 fourierdlem37.q . . . . . . . . . . . . . . . 16 (𝜑𝑄 ∈ (𝑃𝑀))
18 fourierdlem37.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1918fourierdlem2 40847 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2011, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2117, 20mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2221simprd 482 . . . . . . . . . . . . . 14 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2322simplld 808 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) = 𝐴)
2418, 11, 17fourierdlem11 40856 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
2524simp1d 1137 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
2623, 25eqeltrd 2839 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ℝ)
2726, 23eqled 10352 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) ≤ 𝐴)
2827ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ 𝐴)
29 iftrue 4236 . . . . . . . . . . . 12 ((𝐸𝑥) = 𝐵 → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) = 𝐴)
3029eqcomd 2766 . . . . . . . . . . 11 ((𝐸𝑥) = 𝐵𝐴 = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3130adantl 473 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → 𝐴 = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3228, 31breqtrd 4830 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3326adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ∈ ℝ)
3425adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
3534rexrd 10301 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
3624simp2d 1138 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
3736adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
38 iocssre 12466 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
3935, 37, 38syl2anc 696 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
4024simp3d 1139 . . . . . . . . . . . . . . 15 (𝜑𝐴 < 𝐵)
41 fourierdlem37.t . . . . . . . . . . . . . . 15 𝑇 = (𝐵𝐴)
42 fourierdlem37.e . . . . . . . . . . . . . . 15 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4325, 36, 40, 41, 42fourierdlem4 40849 . . . . . . . . . . . . . 14 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
4443ffvelrnda 6523 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ (𝐴(,]𝐵))
4539, 44sseldd 3745 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ ℝ)
4623adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) = 𝐴)
47 elioc2 12449 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐸𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵)))
4835, 37, 47syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐸𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵)))
4944, 48mpbid 222 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵))
5049simp2d 1138 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝐸𝑥))
5146, 50eqbrtrd 4826 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) < (𝐸𝑥))
5233, 45, 51ltled 10397 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐸𝑥))
5352adantr 472 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ (𝐸𝑥))
54 iffalse 4239 . . . . . . . . . . . 12 (¬ (𝐸𝑥) = 𝐵 → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) = (𝐸𝑥))
5554eqcomd 2766 . . . . . . . . . . 11 (¬ (𝐸𝑥) = 𝐵 → (𝐸𝑥) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5655adantl 473 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝐸𝑥) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5753, 56breqtrd 4830 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5832, 57pm2.61dan 867 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
59 fourierdlem37.l . . . . . . . . . 10 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
6059a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)))
61 eqeq1 2764 . . . . . . . . . . 11 (𝑦 = (𝐸𝑥) → (𝑦 = 𝐵 ↔ (𝐸𝑥) = 𝐵))
62 id 22 . . . . . . . . . . 11 (𝑦 = (𝐸𝑥) → 𝑦 = (𝐸𝑥))
6361, 62ifbieq2d 4255 . . . . . . . . . 10 (𝑦 = (𝐸𝑥) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6463adantl 473 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 = (𝐸𝑥)) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6534, 45ifcld 4275 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) ∈ ℝ)
6660, 64, 44, 65fvmptd 6451 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐿‘(𝐸𝑥)) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6758, 66breqtrrd 4832 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐿‘(𝐸𝑥)))
68 fveq2 6353 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
6968breq1d 4814 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) ≤ (𝐿‘(𝐸𝑥)) ↔ (𝑄‘0) ≤ (𝐿‘(𝐸𝑥))))
7069elrab 3504 . . . . . . 7 (0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ (𝐿‘(𝐸𝑥))))
7116, 67, 70sylanbrc 701 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
72 ne0i 4064 . . . . . 6 (0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅)
7371, 72syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅)
74 fzssz 12556 . . . . . . . . 9 (0...𝑀) ⊆ ℤ
755, 74sstri 3753 . . . . . . . 8 (0..^𝑀) ⊆ ℤ
76 zssre 11596 . . . . . . . 8 ℤ ⊆ ℝ
7775, 76sstri 3753 . . . . . . 7 (0..^𝑀) ⊆ ℝ
781, 77sstri 3753 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ
7978a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ)
80 fisupcl 8542 . . . . 5 (( < Or ℝ ∧ ({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅ ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
813, 9, 73, 79, 80syl13anc 1479 . . . 4 ((𝜑𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
821, 81sseldi 3742 . . 3 ((𝜑𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ (0..^𝑀))
83 fourierdlem37.i . . 3 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ))
8482, 83fmptd 6549 . 2 (𝜑𝐼:ℝ⟶(0..^𝑀))
8581ex 449 . 2 (𝜑 → (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}))
8684, 85jca 555 1 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  {crab 3054  wss 3715  c0 4058  ifcif 4230   class class class wbr 4804  cmpt 4881   Or wor 5186  wf 6045  cfv 6049  (class class class)co 6814  𝑚 cmap 8025  Fincfn 8123  supcsup 8513  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  *cxr 10285   < clt 10286  cle 10287  cmin 10478   / cdiv 10896  cn 11232  cz 11589  (,]cioc 12389  ...cfz 12539  ..^cfzo 12679  cfl 12805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-ioc 12393  df-fz 12540  df-fzo 12680  df-fl 12807
This theorem is referenced by:  fourierdlem79  40923  fourierdlem89  40933  fourierdlem90  40934  fourierdlem91  40935
  Copyright terms: Public domain W3C validator