Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem35 Structured version   Visualization version   GIF version

Theorem fourierdlem35 40870
Description: There is a single point in (𝐴(,]𝐵) that's distant from 𝑋 a multiple integer of 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem35.a (𝜑𝐴 ∈ ℝ)
fourierdlem35.b (𝜑𝐵 ∈ ℝ)
fourierdlem35.altb (𝜑𝐴 < 𝐵)
fourierdlem35.t 𝑇 = (𝐵𝐴)
fourierdlem35.5 (𝜑𝑋 ∈ ℝ)
fourierdlem35.i (𝜑𝐼 ∈ ℤ)
fourierdlem35.j (𝜑𝐽 ∈ ℤ)
fourierdlem35.iel (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵))
fourierdlem35.jel (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵))
Assertion
Ref Expression
fourierdlem35 (𝜑𝐼 = 𝐽)

Proof of Theorem fourierdlem35
StepHypRef Expression
1 neqne 2950 . . 3 𝐼 = 𝐽𝐼𝐽)
2 fourierdlem35.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
32adantr 466 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐴 ∈ ℝ)
4 fourierdlem35.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
54adantr 466 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐵 ∈ ℝ)
6 fourierdlem35.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
76adantr 466 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐴 < 𝐵)
8 fourierdlem35.t . . . . . . 7 𝑇 = (𝐵𝐴)
9 fourierdlem35.5 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
109adantr 466 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝑋 ∈ ℝ)
11 fourierdlem35.i . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
1211adantr 466 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐼 ∈ ℤ)
13 fourierdlem35.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
1413adantr 466 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐽 ∈ ℤ)
15 simpr 471 . . . . . . 7 ((𝜑𝐼 < 𝐽) → 𝐼 < 𝐽)
16 iocssicc 12466 . . . . . . . . 9 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
17 fourierdlem35.iel . . . . . . . . 9 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵))
1816, 17sseldi 3748 . . . . . . . 8 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
1918adantr 466 . . . . . . 7 ((𝜑𝐼 < 𝐽) → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
20 fourierdlem35.jel . . . . . . . . 9 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵))
2116, 20sseldi 3748 . . . . . . . 8 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
2221adantr 466 . . . . . . 7 ((𝜑𝐼 < 𝐽) → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
233, 5, 7, 8, 10, 12, 14, 15, 19, 22fourierdlem6 40841 . . . . . 6 ((𝜑𝐼 < 𝐽) → 𝐽 = (𝐼 + 1))
2423orcd 853 . . . . 5 ((𝜑𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
2524adantlr 686 . . . 4 (((𝜑𝐼𝐽) ∧ 𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
26 simpll 742 . . . . 5 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝜑)
2713zred 11683 . . . . . . 7 (𝜑𝐽 ∈ ℝ)
2826, 27syl 17 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽 ∈ ℝ)
2911zred 11683 . . . . . . 7 (𝜑𝐼 ∈ ℝ)
3026, 29syl 17 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐼 ∈ ℝ)
31 id 22 . . . . . . . 8 (𝐼𝐽𝐼𝐽)
3231necomd 2997 . . . . . . 7 (𝐼𝐽𝐽𝐼)
3332ad2antlr 698 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽𝐼)
34 simpr 471 . . . . . 6 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → ¬ 𝐼 < 𝐽)
3528, 30, 33, 34lttri5d 40024 . . . . 5 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → 𝐽 < 𝐼)
362adantr 466 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐴 ∈ ℝ)
374adantr 466 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐵 ∈ ℝ)
386adantr 466 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐴 < 𝐵)
399adantr 466 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝑋 ∈ ℝ)
4013adantr 466 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐽 ∈ ℤ)
4111adantr 466 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐼 ∈ ℤ)
42 simpr 471 . . . . . . 7 ((𝜑𝐽 < 𝐼) → 𝐽 < 𝐼)
4321adantr 466 . . . . . . 7 ((𝜑𝐽 < 𝐼) → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
4418adantr 466 . . . . . . 7 ((𝜑𝐽 < 𝐼) → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
4536, 37, 38, 8, 39, 40, 41, 42, 43, 44fourierdlem6 40841 . . . . . 6 ((𝜑𝐽 < 𝐼) → 𝐼 = (𝐽 + 1))
4645olcd 854 . . . . 5 ((𝜑𝐽 < 𝐼) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
4726, 35, 46syl2anc 565 . . . 4 (((𝜑𝐼𝐽) ∧ ¬ 𝐼 < 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
4825, 47pm2.61dan 796 . . 3 ((𝜑𝐼𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
491, 48sylan2 572 . 2 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
502rexrd 10290 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
514rexrd 10290 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
52 iocleub 40240 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
5350, 51, 20, 52syl3anc 1475 . . . . . . 7 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
5453adantr 466 . . . . . 6 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
552adantr 466 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝐴 ∈ ℝ)
564, 2resubcld 10659 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℝ)
578, 56syl5eqel 2853 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
5829, 57remulcld 10271 . . . . . . . . . . 11 (𝜑 → (𝐼 · 𝑇) ∈ ℝ)
599, 58readdcld 10270 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
6059adantr 466 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
6157adantr 466 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝑇 ∈ ℝ)
62 iocgtlb 40239 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝑋 + (𝐼 · 𝑇)))
6350, 51, 17, 62syl3anc 1475 . . . . . . . . . 10 (𝜑𝐴 < (𝑋 + (𝐼 · 𝑇)))
6463adantr 466 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → 𝐴 < (𝑋 + (𝐼 · 𝑇)))
6555, 60, 61, 64ltadd1dd 10839 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝐴 + 𝑇) < ((𝑋 + (𝐼 · 𝑇)) + 𝑇))
668eqcomi 2779 . . . . . . . . . . 11 (𝐵𝐴) = 𝑇
674recnd 10269 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
682recnd 10269 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
6957recnd 10269 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
7067, 68, 69subaddd 10611 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐴) = 𝑇 ↔ (𝐴 + 𝑇) = 𝐵))
7166, 70mpbii 223 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝑇) = 𝐵)
7271eqcomd 2776 . . . . . . . . 9 (𝜑𝐵 = (𝐴 + 𝑇))
7372adantr 466 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 = (𝐴 + 𝑇))
749recnd 10269 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
7558recnd 10269 . . . . . . . . . . 11 (𝜑 → (𝐼 · 𝑇) ∈ ℂ)
7674, 75, 69addassd 10263 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐼 · 𝑇)) + 𝑇) = (𝑋 + ((𝐼 · 𝑇) + 𝑇)))
7776adantr 466 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → ((𝑋 + (𝐼 · 𝑇)) + 𝑇) = (𝑋 + ((𝐼 · 𝑇) + 𝑇)))
7829recnd 10269 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ ℂ)
7978, 69adddirp1d 10267 . . . . . . . . . . . 12 (𝜑 → ((𝐼 + 1) · 𝑇) = ((𝐼 · 𝑇) + 𝑇))
8079eqcomd 2776 . . . . . . . . . . 11 (𝜑 → ((𝐼 · 𝑇) + 𝑇) = ((𝐼 + 1) · 𝑇))
8180oveq2d 6808 . . . . . . . . . 10 (𝜑 → (𝑋 + ((𝐼 · 𝑇) + 𝑇)) = (𝑋 + ((𝐼 + 1) · 𝑇)))
8281adantr 466 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + ((𝐼 · 𝑇) + 𝑇)) = (𝑋 + ((𝐼 + 1) · 𝑇)))
83 oveq1 6799 . . . . . . . . . . . 12 (𝐽 = (𝐼 + 1) → (𝐽 · 𝑇) = ((𝐼 + 1) · 𝑇))
8483eqcomd 2776 . . . . . . . . . . 11 (𝐽 = (𝐼 + 1) → ((𝐼 + 1) · 𝑇) = (𝐽 · 𝑇))
8584oveq2d 6808 . . . . . . . . . 10 (𝐽 = (𝐼 + 1) → (𝑋 + ((𝐼 + 1) · 𝑇)) = (𝑋 + (𝐽 · 𝑇)))
8685adantl 467 . . . . . . . . 9 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + ((𝐼 + 1) · 𝑇)) = (𝑋 + (𝐽 · 𝑇)))
8777, 82, 863eqtrrd 2809 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) = ((𝑋 + (𝐼 · 𝑇)) + 𝑇))
8865, 73, 873brtr4d 4816 . . . . . . 7 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 < (𝑋 + (𝐽 · 𝑇)))
894adantr 466 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → 𝐵 ∈ ℝ)
9027, 57remulcld 10271 . . . . . . . . . 10 (𝜑 → (𝐽 · 𝑇) ∈ ℝ)
919, 90readdcld 10270 . . . . . . . . 9 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
9291adantr 466 . . . . . . . 8 ((𝜑𝐽 = (𝐼 + 1)) → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
9389, 92ltnled 10385 . . . . . . 7 ((𝜑𝐽 = (𝐼 + 1)) → (𝐵 < (𝑋 + (𝐽 · 𝑇)) ↔ ¬ (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵))
9488, 93mpbid 222 . . . . . 6 ((𝜑𝐽 = (𝐼 + 1)) → ¬ (𝑋 + (𝐽 · 𝑇)) ≤ 𝐵)
9554, 94pm2.65da 800 . . . . 5 (𝜑 → ¬ 𝐽 = (𝐼 + 1))
96 iocleub 40240 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
9750, 51, 17, 96syl3anc 1475 . . . . . . 7 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
9897adantr 466 . . . . . 6 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
992adantr 466 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝐴 ∈ ℝ)
10091adantr 466 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐽 · 𝑇)) ∈ ℝ)
10157adantr 466 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝑇 ∈ ℝ)
102 iocgtlb 40239 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝑋 + (𝐽 · 𝑇)))
10350, 51, 20, 102syl3anc 1475 . . . . . . . . . 10 (𝜑𝐴 < (𝑋 + (𝐽 · 𝑇)))
104103adantr 466 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → 𝐴 < (𝑋 + (𝐽 · 𝑇)))
10599, 100, 101, 104ltadd1dd 10839 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝐴 + 𝑇) < ((𝑋 + (𝐽 · 𝑇)) + 𝑇))
10672adantr 466 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 = (𝐴 + 𝑇))
10790recnd 10269 . . . . . . . . . . 11 (𝜑 → (𝐽 · 𝑇) ∈ ℂ)
10874, 107, 69addassd 10263 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) + 𝑇) = (𝑋 + ((𝐽 · 𝑇) + 𝑇)))
109108adantr 466 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → ((𝑋 + (𝐽 · 𝑇)) + 𝑇) = (𝑋 + ((𝐽 · 𝑇) + 𝑇)))
11027recnd 10269 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℂ)
111110, 69adddirp1d 10267 . . . . . . . . . . . 12 (𝜑 → ((𝐽 + 1) · 𝑇) = ((𝐽 · 𝑇) + 𝑇))
112111eqcomd 2776 . . . . . . . . . . 11 (𝜑 → ((𝐽 · 𝑇) + 𝑇) = ((𝐽 + 1) · 𝑇))
113112oveq2d 6808 . . . . . . . . . 10 (𝜑 → (𝑋 + ((𝐽 · 𝑇) + 𝑇)) = (𝑋 + ((𝐽 + 1) · 𝑇)))
114113adantr 466 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + ((𝐽 · 𝑇) + 𝑇)) = (𝑋 + ((𝐽 + 1) · 𝑇)))
115 oveq1 6799 . . . . . . . . . . . 12 (𝐼 = (𝐽 + 1) → (𝐼 · 𝑇) = ((𝐽 + 1) · 𝑇))
116115eqcomd 2776 . . . . . . . . . . 11 (𝐼 = (𝐽 + 1) → ((𝐽 + 1) · 𝑇) = (𝐼 · 𝑇))
117116oveq2d 6808 . . . . . . . . . 10 (𝐼 = (𝐽 + 1) → (𝑋 + ((𝐽 + 1) · 𝑇)) = (𝑋 + (𝐼 · 𝑇)))
118117adantl 467 . . . . . . . . 9 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + ((𝐽 + 1) · 𝑇)) = (𝑋 + (𝐼 · 𝑇)))
119109, 114, 1183eqtrrd 2809 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) = ((𝑋 + (𝐽 · 𝑇)) + 𝑇))
120105, 106, 1193brtr4d 4816 . . . . . . 7 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 < (𝑋 + (𝐼 · 𝑇)))
1214adantr 466 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → 𝐵 ∈ ℝ)
12259adantr 466 . . . . . . . 8 ((𝜑𝐼 = (𝐽 + 1)) → (𝑋 + (𝐼 · 𝑇)) ∈ ℝ)
123121, 122ltnled 10385 . . . . . . 7 ((𝜑𝐼 = (𝐽 + 1)) → (𝐵 < (𝑋 + (𝐼 · 𝑇)) ↔ ¬ (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵))
124120, 123mpbid 222 . . . . . 6 ((𝜑𝐼 = (𝐽 + 1)) → ¬ (𝑋 + (𝐼 · 𝑇)) ≤ 𝐵)
12598, 124pm2.65da 800 . . . . 5 (𝜑 → ¬ 𝐼 = (𝐽 + 1))
12695, 125jca 495 . . . 4 (𝜑 → (¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)))
127126adantr 466 . . 3 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → (¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)))
128 pm4.56 917 . . 3 ((¬ 𝐽 = (𝐼 + 1) ∧ ¬ 𝐼 = (𝐽 + 1)) ↔ ¬ (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
129127, 128sylib 208 . 2 ((𝜑 ∧ ¬ 𝐼 = 𝐽) → ¬ (𝐽 = (𝐼 + 1) ∨ 𝐼 = (𝐽 + 1)))
13049, 129condan 801 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wo 826   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  (class class class)co 6792  cr 10136  1c1 10138   + caddc 10140   · cmul 10142  *cxr 10274   < clt 10275  cle 10276  cmin 10467  cz 11578  (,]cioc 12380  [,]cicc 12382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-n0 11494  df-z 11579  df-rp 12035  df-ioc 12384  df-icc 12386
This theorem is referenced by:  fourierdlem51  40885
  Copyright terms: Public domain W3C validator