Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem31 Structured version   Visualization version   GIF version

Theorem fourierdlem31 40673
Description: If 𝐴 is finite and for any element in 𝐴 there is a number 𝑚 such that a property holds for all numbers larger than 𝑚, then there is a number 𝑛 such that the property holds for all numbers larger than 𝑛 and for all elements in 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.)
Hypotheses
Ref Expression
fourierdlem31.i 𝑖𝜑
fourierdlem31.r 𝑟𝜑
fourierdlem31.iv 𝑖𝑉
fourierdlem31.a (𝜑𝐴 ∈ Fin)
fourierdlem31.exm (𝜑 → ∀𝑖𝐴𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
fourierdlem31.m 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
fourierdlem31.v 𝑉 = (𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
fourierdlem31.n 𝑁 = sup(ran 𝑉, ℝ, < )
Assertion
Ref Expression
fourierdlem31 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑟   𝐴,𝑛,𝑖,𝑟   𝑛,𝑁   𝜒,𝑚   𝜒,𝑛
Allowed substitution hints:   𝜑(𝑖,𝑚,𝑛,𝑟)   𝜒(𝑖,𝑟)   𝑀(𝑖,𝑚,𝑛,𝑟)   𝑁(𝑖,𝑚,𝑟)   𝑉(𝑖,𝑚,𝑛,𝑟)

Proof of Theorem fourierdlem31
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 11069 . . . 4 1 ∈ ℕ
2 rzal 4106 . . . . 5 (𝐴 = ∅ → ∀𝑖𝐴 𝜒)
32ralrimivw 2996 . . . 4 (𝐴 = ∅ → ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒)
4 oveq1 6697 . . . . . 6 (𝑛 = 1 → (𝑛(,)+∞) = (1(,)+∞))
54raleqdv 3174 . . . . 5 (𝑛 = 1 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒))
65rspcev 3340 . . . 4 ((1 ∈ ℕ ∧ ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
71, 3, 6sylancr 696 . . 3 (𝐴 = ∅ → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
87adantl 481 . 2 ((𝜑𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
9 fourierdlem31.n . . . 4 𝑁 = sup(ran 𝑉, ℝ, < )
10 fourierdlem31.i . . . . . . . 8 𝑖𝜑
11 fourierdlem31.m . . . . . . . . . . . 12 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
1211a1i 11 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
1312infeq1d 8424 . . . . . . . . . 10 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ))
14 ssrab2 3720 . . . . . . . . . . 11 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ ℕ
15 nnuz 11761 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1614, 15sseqtri 3670 . . . . . . . . . . . 12 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ‘1)
17 fourierdlem31.exm . . . . . . . . . . . . . 14 (𝜑 → ∀𝑖𝐴𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
1817r19.21bi 2961 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
19 rabn0 3991 . . . . . . . . . . . . 13 ({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅ ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
2018, 19sylibr 224 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅)
21 infssuzcl 11810 . . . . . . . . . . . 12 (({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ‘1) ∧ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
2216, 20, 21sylancr 696 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
2314, 22sseldi 3634 . . . . . . . . . 10 ((𝜑𝑖𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ ℕ)
2413, 23eqeltrd 2730 . . . . . . . . 9 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ℕ)
2524ex 449 . . . . . . . 8 (𝜑 → (𝑖𝐴 → inf(𝑀, ℝ, < ) ∈ ℕ))
2610, 25ralrimi 2986 . . . . . . 7 (𝜑 → ∀𝑖𝐴 inf(𝑀, ℝ, < ) ∈ ℕ)
27 fourierdlem31.v . . . . . . . 8 𝑉 = (𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
2827rnmptss 6432 . . . . . . 7 (∀𝑖𝐴 inf(𝑀, ℝ, < ) ∈ ℕ → ran 𝑉 ⊆ ℕ)
2926, 28syl 17 . . . . . 6 (𝜑 → ran 𝑉 ⊆ ℕ)
3029adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℕ)
31 ltso 10156 . . . . . . 7 < Or ℝ
3231a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → < Or ℝ)
33 fourierdlem31.a . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
34 mptfi 8306 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝑖𝐴 ↦ inf(𝑀, ℝ, < )) ∈ Fin)
3533, 34syl 17 . . . . . . . . 9 (𝜑 → (𝑖𝐴 ↦ inf(𝑀, ℝ, < )) ∈ Fin)
3627, 35syl5eqel 2734 . . . . . . . 8 (𝜑𝑉 ∈ Fin)
37 rnfi 8290 . . . . . . . 8 (𝑉 ∈ Fin → ran 𝑉 ∈ Fin)
3836, 37syl 17 . . . . . . 7 (𝜑 → ran 𝑉 ∈ Fin)
3938adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ∈ Fin)
40 neqne 2831 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
41 n0 3964 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑖 𝑖𝐴)
4240, 41sylib 208 . . . . . . . 8 𝐴 = ∅ → ∃𝑖 𝑖𝐴)
4342adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑖 𝑖𝐴)
44 nfv 1883 . . . . . . . . 9 𝑖 ¬ 𝐴 = ∅
4510, 44nfan 1868 . . . . . . . 8 𝑖(𝜑 ∧ ¬ 𝐴 = ∅)
46 fourierdlem31.iv . . . . . . . . . 10 𝑖𝑉
4746nfrn 5400 . . . . . . . . 9 𝑖ran 𝑉
48 nfcv 2793 . . . . . . . . 9 𝑖
4947, 48nfne 2923 . . . . . . . 8 𝑖ran 𝑉 ≠ ∅
50 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → 𝑖𝐴)
5127elrnmpt1 5406 . . . . . . . . . . . 12 ((𝑖𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) → inf(𝑀, ℝ, < ) ∈ ran 𝑉)
5250, 24, 51syl2anc 694 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ran 𝑉)
53 ne0i 3954 . . . . . . . . . . 11 (inf(𝑀, ℝ, < ) ∈ ran 𝑉 → ran 𝑉 ≠ ∅)
5452, 53syl 17 . . . . . . . . . 10 ((𝜑𝑖𝐴) → ran 𝑉 ≠ ∅)
5554ex 449 . . . . . . . . 9 (𝜑 → (𝑖𝐴 → ran 𝑉 ≠ ∅))
5655adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑖𝐴 → ran 𝑉 ≠ ∅))
5745, 49, 56exlimd 2125 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → (∃𝑖 𝑖𝐴 → ran 𝑉 ≠ ∅))
5843, 57mpd 15 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ≠ ∅)
59 nnssre 11062 . . . . . . 7 ℕ ⊆ ℝ
6030, 59syl6ss 3648 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℝ)
61 fisupcl 8416 . . . . . 6 (( < Or ℝ ∧ (ran 𝑉 ∈ Fin ∧ ran 𝑉 ≠ ∅ ∧ ran 𝑉 ⊆ ℝ)) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉)
6232, 39, 58, 60, 61syl13anc 1368 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉)
6330, 62sseldd 3637 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ℕ)
649, 63syl5eqel 2734 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑁 ∈ ℕ)
65 fourierdlem31.r . . . . 5 𝑟𝜑
66 nfcv 2793 . . . . . . . . . . . 12 𝑖
67 nfcv 2793 . . . . . . . . . . . 12 𝑖 <
6847, 66, 67nfsup 8398 . . . . . . . . . . 11 𝑖sup(ran 𝑉, ℝ, < )
699, 68nfcxfr 2791 . . . . . . . . . 10 𝑖𝑁
70 nfcv 2793 . . . . . . . . . 10 𝑖(,)
71 nfcv 2793 . . . . . . . . . 10 𝑖+∞
7269, 70, 71nfov 6716 . . . . . . . . 9 𝑖(𝑁(,)+∞)
7372nfcri 2787 . . . . . . . 8 𝑖 𝑟 ∈ (𝑁(,)+∞)
7410, 73nfan 1868 . . . . . . 7 𝑖(𝜑𝑟 ∈ (𝑁(,)+∞))
7527fvmpt2 6330 . . . . . . . . . . . . . 14 ((𝑖𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) → (𝑉𝑖) = inf(𝑀, ℝ, < ))
7650, 24, 75syl2anc 694 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) = inf(𝑀, ℝ, < ))
7724nnxrd 39515 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ℝ*)
7876, 77eqeltrd 2730 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℝ*)
7978adantr 480 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ∈ ℝ*)
80 pnfxr 10130 . . . . . . . . . . . 12 +∞ ∈ ℝ*
8180a1i 11 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → +∞ ∈ ℝ*)
82 elioore 12243 . . . . . . . . . . . 12 (𝑟 ∈ (𝑁(,)+∞) → 𝑟 ∈ ℝ)
8382adantl 481 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ℝ)
8476, 24eqeltrd 2730 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℕ)
8584nnred 11073 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℝ)
8685adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ∈ ℝ)
87 ne0i 3954 . . . . . . . . . . . . . . . . 17 (𝑖𝐴𝐴 ≠ ∅)
8887adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝐴) → 𝐴 ≠ ∅)
8988neneqd 2828 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ¬ 𝐴 = ∅)
9089, 64syldan 486 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → 𝑁 ∈ ℕ)
9190nnred 11073 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → 𝑁 ∈ ℝ)
9291adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ)
9389, 60syldan 486 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ran 𝑉 ⊆ ℝ)
9429, 59syl6ss 3648 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝑉 ⊆ ℝ)
95 fimaxre2 11007 . . . . . . . . . . . . . . . . 17 ((ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9694, 38, 95syl2anc 694 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9796adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9876, 52eqeltrd 2730 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ran 𝑉)
99 suprub 11022 . . . . . . . . . . . . . . 15 (((ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥) ∧ (𝑉𝑖) ∈ ran 𝑉) → (𝑉𝑖) ≤ sup(ran 𝑉, ℝ, < ))
10093, 54, 97, 98, 99syl31anc 1369 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → (𝑉𝑖) ≤ sup(ran 𝑉, ℝ, < ))
101100, 9syl6breqr 4727 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ≤ 𝑁)
102101adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ≤ 𝑁)
10392rexrd 10127 . . . . . . . . . . . . 13 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ*)
104 simpr 476 . . . . . . . . . . . . 13 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ (𝑁(,)+∞))
105 ioogtlb 40035 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟)
106103, 81, 104, 105syl3anc 1366 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟)
10786, 92, 83, 102, 106lelttrd 10233 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) < 𝑟)
10883ltpnfd 11993 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 < +∞)
10979, 81, 83, 107, 108eliood 40038 . . . . . . . . . 10 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ((𝑉𝑖)(,)+∞))
11013, 22eqeltrd 2730 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
11176, 110eqeltrd 2730 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
112 nfcv 2793 . . . . . . . . . . . . . . . . . 18 𝑚𝐴
113 nfrab1 3152 . . . . . . . . . . . . . . . . . . . 20 𝑚{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
11411, 113nfcxfr 2791 . . . . . . . . . . . . . . . . . . 19 𝑚𝑀
115 nfcv 2793 . . . . . . . . . . . . . . . . . . 19 𝑚
116 nfcv 2793 . . . . . . . . . . . . . . . . . . 19 𝑚 <
117114, 115, 116nfinf 8429 . . . . . . . . . . . . . . . . . 18 𝑚inf(𝑀, ℝ, < )
118112, 117nfmpt 4779 . . . . . . . . . . . . . . . . 17 𝑚(𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
11927, 118nfcxfr 2791 . . . . . . . . . . . . . . . 16 𝑚𝑉
120 nfcv 2793 . . . . . . . . . . . . . . . 16 𝑚𝑖
121119, 120nffv 6236 . . . . . . . . . . . . . . 15 𝑚(𝑉𝑖)
122121, 113nfel 2806 . . . . . . . . . . . . . . . 16 𝑚(𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
123121nfel1 2808 . . . . . . . . . . . . . . . . 17 𝑚(𝑉𝑖) ∈ ℕ
124 nfcv 2793 . . . . . . . . . . . . . . . . . . 19 𝑚(,)
125 nfcv 2793 . . . . . . . . . . . . . . . . . . 19 𝑚+∞
126121, 124, 125nfov 6716 . . . . . . . . . . . . . . . . . 18 𝑚((𝑉𝑖)(,)+∞)
127 nfv 1883 . . . . . . . . . . . . . . . . . 18 𝑚𝜒
128126, 127nfral 2974 . . . . . . . . . . . . . . . . 17 𝑚𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒
129123, 128nfan 1868 . . . . . . . . . . . . . . . 16 𝑚((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)
130122, 129nfbi 1873 . . . . . . . . . . . . . . 15 𝑚((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
131 eleq1 2718 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑉𝑖) → (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}))
132 eleq1 2718 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑉𝑖) → (𝑚 ∈ ℕ ↔ (𝑉𝑖) ∈ ℕ))
133 oveq1 6697 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑉𝑖) → (𝑚(,)+∞) = ((𝑉𝑖)(,)+∞))
134 nfcv 2793 . . . . . . . . . . . . . . . . . . 19 𝑟(𝑚(,)+∞)
135 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . . 23 𝑟𝐴
136 nfra1 2970 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟𝑟 ∈ (𝑚(,)+∞)𝜒
137 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟
138136, 137nfrab 3153 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑟{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
13911, 138nfcxfr 2791 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟𝑀
140 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟
141 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟 <
142139, 140, 141nfinf 8429 . . . . . . . . . . . . . . . . . . . . . . 23 𝑟inf(𝑀, ℝ, < )
143135, 142nfmpt 4779 . . . . . . . . . . . . . . . . . . . . . 22 𝑟(𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
14427, 143nfcxfr 2791 . . . . . . . . . . . . . . . . . . . . 21 𝑟𝑉
145 nfcv 2793 . . . . . . . . . . . . . . . . . . . . 21 𝑟𝑖
146144, 145nffv 6236 . . . . . . . . . . . . . . . . . . . 20 𝑟(𝑉𝑖)
147 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑟(,)
148 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑟+∞
149146, 147, 148nfov 6716 . . . . . . . . . . . . . . . . . . 19 𝑟((𝑉𝑖)(,)+∞)
150134, 149raleqf 3164 . . . . . . . . . . . . . . . . . 18 ((𝑚(,)+∞) = ((𝑉𝑖)(,)+∞) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
151133, 150syl 17 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑉𝑖) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
152132, 151anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑉𝑖) → ((𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
153131, 152bibi12d 334 . . . . . . . . . . . . . . 15 (𝑚 = (𝑉𝑖) → ((𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)) ↔ ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))))
154 rabid 3145 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒))
155121, 130, 153, 154vtoclgf 3295 . . . . . . . . . . . . . 14 ((𝑉𝑖) ∈ ℕ → ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
15684, 155syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
157111, 156mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
158157simprd 478 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)
159158r19.21bi 2961 . . . . . . . . . 10 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ ((𝑉𝑖)(,)+∞)) → 𝜒)
160109, 159syldan 486 . . . . . . . . 9 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝜒)
161160an32s 863 . . . . . . . 8 (((𝜑𝑟 ∈ (𝑁(,)+∞)) ∧ 𝑖𝐴) → 𝜒)
162161ex 449 . . . . . . 7 ((𝜑𝑟 ∈ (𝑁(,)+∞)) → (𝑖𝐴𝜒))
16374, 162ralrimi 2986 . . . . . 6 ((𝜑𝑟 ∈ (𝑁(,)+∞)) → ∀𝑖𝐴 𝜒)
164163ex 449 . . . . 5 (𝜑 → (𝑟 ∈ (𝑁(,)+∞) → ∀𝑖𝐴 𝜒))
16565, 164ralrimi 2986 . . . 4 (𝜑 → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒)
166165adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒)
167 oveq1 6697 . . . . 5 (𝑛 = 𝑁 → (𝑛(,)+∞) = (𝑁(,)+∞))
168 nfcv 2793 . . . . . 6 𝑟(𝑛(,)+∞)
169144nfrn 5400 . . . . . . . . 9 𝑟ran 𝑉
170169, 140, 141nfsup 8398 . . . . . . . 8 𝑟sup(ran 𝑉, ℝ, < )
1719, 170nfcxfr 2791 . . . . . . 7 𝑟𝑁
172171, 147, 148nfov 6716 . . . . . 6 𝑟(𝑁(,)+∞)
173168, 172raleqf 3164 . . . . 5 ((𝑛(,)+∞) = (𝑁(,)+∞) → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒))
174167, 173syl 17 . . . 4 (𝑛 = 𝑁 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒))
175174rspcev 3340 . . 3 ((𝑁 ∈ ℕ ∧ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
17664, 166, 175syl2anc 694 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
1778, 176pm2.61dan 849 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wnf 1748  wcel 2030  wnfc 2780  wne 2823  wral 2941  wrex 2942  {crab 2945  wss 3607  c0 3948   class class class wbr 4685  cmpt 4762   Or wor 5063  ran crn 5144  cfv 5926  (class class class)co 6690  Fincfn 7997  supcsup 8387  infcinf 8388  cr 9973  1c1 9975  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cn 11058  cuz 11725  (,)cioo 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-ioo 12217
This theorem is referenced by:  fourierdlem73  40714
  Copyright terms: Public domain W3C validator