Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem27 Structured version   Visualization version   GIF version

Theorem fourierdlem27 40823
Description: A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem27.a (𝜑𝐴 ∈ ℝ*)
fourierdlem27.b (𝜑𝐵 ∈ ℝ*)
fourierdlem27.q (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem27.i (𝜑𝐼 ∈ (0..^𝑀))
Assertion
Ref Expression
fourierdlem27 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵))

Proof of Theorem fourierdlem27
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem27.a . . . . 5 (𝜑𝐴 ∈ ℝ*)
21adantr 472 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ∈ ℝ*)
3 fourierdlem27.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
43adantr 472 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐵 ∈ ℝ*)
5 elioore 12369 . . . . 5 (𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ)
65adantl 473 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ)
7 iccssxr 12420 . . . . . . 7 (𝐴[,]𝐵) ⊆ ℝ*
8 fourierdlem27.q . . . . . . . 8 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
9 fourierdlem27.i . . . . . . . . 9 (𝜑𝐼 ∈ (0..^𝑀))
10 elfzofz 12650 . . . . . . . . 9 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
119, 10syl 17 . . . . . . . 8 (𝜑𝐼 ∈ (0...𝑀))
128, 11ffvelrnd 6511 . . . . . . 7 (𝜑 → (𝑄𝐼) ∈ (𝐴[,]𝐵))
137, 12sseldi 3730 . . . . . 6 (𝜑 → (𝑄𝐼) ∈ ℝ*)
1413adantr 472 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
156rexrd 10252 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ*)
16 iccgelb 12394 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝐼))
171, 3, 12, 16syl3anc 1463 . . . . . 6 (𝜑𝐴 ≤ (𝑄𝐼))
1817adantr 472 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ≤ (𝑄𝐼))
19 fzofzp1 12730 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
209, 19syl 17 . . . . . . . . 9 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
218, 20ffvelrnd 6511 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵))
227, 21sseldi 3730 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
2322adantr 472 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
24 simpr 479 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
25 ioogtlb 40189 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
2614, 23, 24, 25syl3anc 1463 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
272, 14, 15, 18, 26xrlelttrd 12155 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 < 𝑥)
28 iooltub 40207 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
2914, 23, 24, 28syl3anc 1463 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
30 iccleub 12393 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
311, 3, 21, 30syl3anc 1463 . . . . . 6 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
3231adantr 472 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
3315, 23, 4, 29, 32xrltletrd 12156 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < 𝐵)
342, 4, 6, 27, 33eliood 40192 . . 3 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (𝐴(,)𝐵))
3534ralrimiva 3092 . 2 (𝜑 → ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵))
36 dfss3 3721 . 2 (((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵) ↔ ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵))
3735, 36sylibr 224 1 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2127  wral 3038  wss 3703   class class class wbr 4792  wf 6033  cfv 6037  (class class class)co 6801  cr 10098  0cc0 10099  1c1 10100   + caddc 10102  *cxr 10236   < clt 10237  cle 10238  (,)cioo 12339  [,]cicc 12342  ...cfz 12490  ..^cfzo 12630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-n0 11456  df-z 11541  df-uz 11851  df-ioo 12343  df-icc 12346  df-fz 12491  df-fzo 12631
This theorem is referenced by:  fourierdlem102  40897  fourierdlem114  40909
  Copyright terms: Public domain W3C validator