Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem2 Structured version   Visualization version   GIF version

Theorem fourierdlem2 40644
 Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem2.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
Assertion
Ref Expression
fourierdlem2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem2
StepHypRef Expression
1 oveq2 6698 . . . . . 6 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
21oveq2d 6706 . . . . 5 (𝑚 = 𝑀 → (ℝ ↑𝑚 (0...𝑚)) = (ℝ ↑𝑚 (0...𝑀)))
3 fveq2 6229 . . . . . . . 8 (𝑚 = 𝑀 → (𝑝𝑚) = (𝑝𝑀))
43eqeq1d 2653 . . . . . . 7 (𝑚 = 𝑀 → ((𝑝𝑚) = 𝐵 ↔ (𝑝𝑀) = 𝐵))
54anbi2d 740 . . . . . 6 (𝑚 = 𝑀 → (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵)))
6 oveq2 6698 . . . . . . 7 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
76raleqdv 3174 . . . . . 6 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
85, 7anbi12d 747 . . . . 5 (𝑚 = 𝑀 → ((((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))))
92, 8rabeqbidv 3226 . . . 4 (𝑚 = 𝑀 → {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
10 fourierdlem2.1 . . . 4 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
11 ovex 6718 . . . . 5 (ℝ ↑𝑚 (0...𝑀)) ∈ V
1211rabex 4845 . . . 4 {𝑝 ∈ (ℝ ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ∈ V
139, 10, 12fvmpt 6321 . . 3 (𝑀 ∈ ℕ → (𝑃𝑀) = {𝑝 ∈ (ℝ ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1413eleq2d 2716 . 2 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ 𝑄 ∈ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}))
15 fveq1 6228 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘0) = (𝑄‘0))
1615eqeq1d 2653 . . . . 5 (𝑝 = 𝑄 → ((𝑝‘0) = 𝐴 ↔ (𝑄‘0) = 𝐴))
17 fveq1 6228 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑀) = (𝑄𝑀))
1817eqeq1d 2653 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑀) = 𝐵 ↔ (𝑄𝑀) = 𝐵))
1916, 18anbi12d 747 . . . 4 (𝑝 = 𝑄 → (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ↔ ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵)))
20 fveq1 6228 . . . . . 6 (𝑝 = 𝑄 → (𝑝𝑖) = (𝑄𝑖))
21 fveq1 6228 . . . . . 6 (𝑝 = 𝑄 → (𝑝‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))
2220, 21breq12d 4698 . . . . 5 (𝑝 = 𝑄 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2322ralbidv 3015 . . . 4 (𝑝 = 𝑄 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2419, 23anbi12d 747 . . 3 (𝑝 = 𝑄 → ((((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2524elrab 3396 . 2 (𝑄 ∈ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑀)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2614, 25syl6bb 276 1 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  {crab 2945   class class class wbr 4685   ↦ cmpt 4762  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  ℕcn 11058  ...cfz 12364  ..^cfzo 12504 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693 This theorem is referenced by:  fourierdlem11  40653  fourierdlem12  40654  fourierdlem13  40655  fourierdlem14  40656  fourierdlem15  40657  fourierdlem34  40676  fourierdlem37  40679  fourierdlem41  40683  fourierdlem48  40689  fourierdlem49  40690  fourierdlem50  40691  fourierdlem54  40695  fourierdlem63  40704  fourierdlem64  40705  fourierdlem65  40706  fourierdlem69  40710  fourierdlem70  40711  fourierdlem72  40713  fourierdlem74  40715  fourierdlem75  40716  fourierdlem76  40717  fourierdlem79  40720  fourierdlem81  40722  fourierdlem85  40726  fourierdlem88  40729  fourierdlem89  40730  fourierdlem90  40731  fourierdlem91  40732  fourierdlem92  40733  fourierdlem93  40734  fourierdlem94  40735  fourierdlem97  40738  fourierdlem102  40743  fourierdlem103  40744  fourierdlem104  40745  fourierdlem111  40752  fourierdlem113  40754  fourierdlem114  40755
 Copyright terms: Public domain W3C validator