Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem17 Structured version   Visualization version   GIF version

Theorem fourierdlem17 40862
Description: The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem17.a (𝜑𝐴 ∈ ℝ)
fourierdlem17.b (𝜑𝐵 ∈ ℝ)
fourierdlem17.altb (𝜑𝐴 < 𝐵)
fourierdlem17.l 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥))
Assertion
Ref Expression
fourierdlem17 (𝜑𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐿(𝑥)

Proof of Theorem fourierdlem17
StepHypRef Expression
1 fourierdlem17.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem17.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31leidd 10806 . . . . 5 (𝜑𝐴𝐴)
4 fourierdlem17.altb . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 4ltled 10397 . . . . 5 (𝜑𝐴𝐵)
61, 2, 1, 3, 5eliccd 40247 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
76ad2antrr 764 . . 3 (((𝜑𝑥 ∈ (𝐴(,]𝐵)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
8 iocssicc 12474 . . . . 5 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
98sseli 3740 . . . 4 (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
109ad2antlr 765 . . 3 (((𝜑𝑥 ∈ (𝐴(,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
117, 10ifclda 4264 . 2 ((𝜑𝑥 ∈ (𝐴(,]𝐵)) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝐴[,]𝐵))
12 fourierdlem17.l . 2 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥))
1311, 12fmptd 6549 1 (𝜑𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  ifcif 4230   class class class wbr 4804  cmpt 4881  wf 6045  (class class class)co 6814  cr 10147   < clt 10286  (,]cioc 12389  [,]cicc 12391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-pre-lttri 10222  ax-pre-lttrn 10223
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-ioc 12393  df-icc 12395
This theorem is referenced by:  fourierdlem79  40923  fourierdlem89  40933  fourierdlem90  40934  fourierdlem91  40935
  Copyright terms: Public domain W3C validator