![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem17 | Structured version Visualization version GIF version |
Description: The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem17.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
fourierdlem17.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
fourierdlem17.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
fourierdlem17.l | ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) |
Ref | Expression |
---|---|
fourierdlem17 | ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem17.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | fourierdlem17.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1 | leidd 10806 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
4 | fourierdlem17.altb | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
5 | 1, 2, 4 | ltled 10397 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
6 | 1, 2, 1, 3, 5 | eliccd 40247 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
7 | 6 | ad2antrr 764 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
8 | iocssicc 12474 | . . . . 5 ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) | |
9 | 8 | sseli 3740 | . . . 4 ⊢ (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
10 | 9 | ad2antlr 765 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
11 | 7, 10 | ifclda 4264 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝐴[,]𝐵)) |
12 | fourierdlem17.l | . 2 ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) | |
13 | 11, 12 | fmptd 6549 | 1 ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ifcif 4230 class class class wbr 4804 ↦ cmpt 4881 ⟶wf 6045 (class class class)co 6814 ℝcr 10147 < clt 10286 (,]cioc 12389 [,]cicc 12391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-pre-lttri 10222 ax-pre-lttrn 10223 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-ioc 12393 df-icc 12395 |
This theorem is referenced by: fourierdlem79 40923 fourierdlem89 40933 fourierdlem90 40934 fourierdlem91 40935 |
Copyright terms: Public domain | W3C validator |