![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fouriercnp | Structured version Visualization version GIF version |
Description: If 𝐹 is continuous at the point 𝑋, then its Fourier series at 𝑋, converges to (𝐹‘𝑋). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fouriercnp.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
fouriercnp.t | ⊢ 𝑇 = (2 · π) |
fouriercnp.per | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
fouriercnp.g | ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) |
fouriercnp.dmdv | ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) |
fouriercnp.dvcn | ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) |
fouriercnp.rlim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) |
fouriercnp.llim | ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) |
fouriercnp.j | ⊢ 𝐽 = (topGen‘ran (,)) |
fouriercnp.cnp | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋)) |
fouriercnp.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
fouriercnp.b | ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
Ref | Expression |
---|---|
fouriercnp | ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fouriercnp.f | . . 3 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
2 | fouriercnp.t | . . 3 ⊢ 𝑇 = (2 · π) | |
3 | fouriercnp.per | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) | |
4 | fouriercnp.g | . . 3 ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) | |
5 | fouriercnp.dmdv | . . 3 ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) | |
6 | fouriercnp.dvcn | . . 3 ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) | |
7 | fouriercnp.rlim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) | |
8 | fouriercnp.llim | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) | |
9 | fouriercnp.cnp | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋)) | |
10 | uniretop 22767 | . . . . . 6 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
11 | fouriercnp.j | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
12 | 11 | unieqi 4597 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ (topGen‘ran (,)) |
13 | 10, 12 | eqtr4i 2785 | . . . . 5 ⊢ ℝ = ∪ 𝐽 |
14 | 13 | cnprcl 21251 | . . . 4 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋) → 𝑋 ∈ ℝ) |
15 | 9, 14 | syl 17 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ) |
16 | limcresi 23848 | . . . 4 ⊢ (𝐹 limℂ 𝑋) ⊆ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) | |
17 | eqid 2760 | . . . . . . . . . . . 12 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
18 | 17 | tgioo2 22807 | . . . . . . . . . . 11 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
19 | 11, 18 | eqtri 2782 | . . . . . . . . . 10 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) |
20 | 19 | oveq2i 6824 | . . . . . . . . 9 ⊢ (𝐽 CnP 𝐽) = (𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ)) |
21 | 20 | fveq1i 6353 | . . . . . . . 8 ⊢ ((𝐽 CnP 𝐽)‘𝑋) = ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋) |
22 | 9, 21 | syl6eleq 2849 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋)) |
23 | 17 | cnfldtop 22788 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) ∈ Top |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ Top) |
25 | ax-resscn 10185 | . . . . . . . . 9 ⊢ ℝ ⊆ ℂ | |
26 | 25 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ⊆ ℂ) |
27 | unicntop 22790 | . . . . . . . . 9 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
28 | 13, 27 | cnprest2 21296 | . . . . . . . 8 ⊢ (((TopOpen‘ℂfld) ∈ Top ∧ 𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋))) |
29 | 24, 1, 26, 28 | syl3anc 1477 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ 𝐹 ∈ ((𝐽 CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑋))) |
30 | 22, 29 | mpbird 247 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋)) |
31 | 17, 19 | cnplimc 23850 | . . . . . . 7 ⊢ ((ℝ ⊆ ℂ ∧ 𝑋 ∈ ℝ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)))) |
32 | 25, 15, 31 | sylancr 698 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝑋) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)))) |
33 | 30, 32 | mpbid 222 | . . . . 5 ⊢ (𝜑 → (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋))) |
34 | 33 | simprd 482 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐹 limℂ 𝑋)) |
35 | 16, 34 | sseldi 3742 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
36 | limcresi 23848 | . . . 4 ⊢ (𝐹 limℂ 𝑋) ⊆ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) | |
37 | 36, 34 | sseldi 3742 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
38 | fouriercnp.a | . . 3 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) | |
39 | fouriercnp.b | . . 3 ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) | |
40 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 35, 37, 38, 39 | fourierd 40942 | . 2 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (((𝐹‘𝑋) + (𝐹‘𝑋)) / 2)) |
41 | 1, 15 | ffvelrnd 6523 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℝ) |
42 | 41 | recnd 10260 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
43 | 42 | 2timesd 11467 | . . . 4 ⊢ (𝜑 → (2 · (𝐹‘𝑋)) = ((𝐹‘𝑋) + (𝐹‘𝑋))) |
44 | 43 | eqcomd 2766 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑋) + (𝐹‘𝑋)) = (2 · (𝐹‘𝑋))) |
45 | 44 | oveq1d 6828 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋) + (𝐹‘𝑋)) / 2) = ((2 · (𝐹‘𝑋)) / 2)) |
46 | 2cnd 11285 | . . 3 ⊢ (𝜑 → 2 ∈ ℂ) | |
47 | 2ne0 11305 | . . . 4 ⊢ 2 ≠ 0 | |
48 | 47 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ≠ 0) |
49 | 42, 46, 48 | divcan3d 10998 | . 2 ⊢ (𝜑 → ((2 · (𝐹‘𝑋)) / 2) = (𝐹‘𝑋)) |
50 | 40, 45, 49 | 3eqtrd 2798 | 1 ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∖ cdif 3712 ⊆ wss 3715 ∅c0 4058 ∪ cuni 4588 ↦ cmpt 4881 dom cdm 5266 ran crn 5267 ↾ cres 5268 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 Fincfn 8121 ℂcc 10126 ℝcr 10127 0cc0 10128 + caddc 10131 · cmul 10133 +∞cpnf 10263 -∞cmnf 10264 -cneg 10459 / cdiv 10876 ℕcn 11212 2c2 11262 ℕ0cn0 11484 (,)cioo 12368 (,]cioc 12369 [,)cico 12370 Σcsu 14615 sincsin 14993 cosccos 14994 πcpi 14996 ↾t crest 16283 TopOpenctopn 16284 topGenctg 16300 ℂfldccnfld 19948 Topctop 20900 CnP ccnp 21231 –cn→ccncf 22880 ∫citg 23586 limℂ climc 23825 D cdv 23826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cc 9449 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-disj 4773 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-ofr 7063 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-omul 7734 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-fi 8482 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-acn 8958 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-xnn0 11556 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-ioo 12372 df-ioc 12373 df-ico 12374 df-icc 12375 df-fz 12520 df-fzo 12660 df-fl 12787 df-mod 12863 df-seq 12996 df-exp 13055 df-fac 13255 df-bc 13284 df-hash 13312 df-shft 14006 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-limsup 14401 df-clim 14418 df-rlim 14419 df-sum 14616 df-ef 14997 df-sin 14999 df-cos 15000 df-pi 15002 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-hom 16168 df-cco 16169 df-rest 16285 df-topn 16286 df-0g 16304 df-gsum 16305 df-topgen 16306 df-pt 16307 df-prds 16310 df-xrs 16364 df-qtop 16369 df-imas 16370 df-xps 16372 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-mulg 17742 df-cntz 17950 df-cmn 18395 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-fbas 19945 df-fg 19946 df-cnfld 19949 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-cld 21025 df-ntr 21026 df-cls 21027 df-nei 21104 df-lp 21142 df-perf 21143 df-cn 21233 df-cnp 21234 df-t1 21320 df-haus 21321 df-cmp 21392 df-tx 21567 df-hmeo 21760 df-fil 21851 df-fm 21943 df-flim 21944 df-flf 21945 df-xms 22326 df-ms 22327 df-tms 22328 df-cncf 22882 df-ovol 23433 df-vol 23434 df-mbf 23587 df-itg1 23588 df-itg2 23589 df-ibl 23590 df-itg 23591 df-0p 23636 df-ditg 23810 df-limc 23829 df-dv 23830 |
This theorem is referenced by: fouriercn 40952 |
Copyright terms: Public domain | W3C validator |