MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foun Structured version   Visualization version   GIF version

Theorem foun 6295
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
foun (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))

Proof of Theorem foun
StepHypRef Expression
1 fofn 6257 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 fofn 6257 . . . 4 (𝐺:𝐶onto𝐷𝐺 Fn 𝐶)
31, 2anim12i 592 . . 3 ((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) → (𝐹 Fn 𝐴𝐺 Fn 𝐶))
4 fnun 6136 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
53, 4sylan 490 . 2 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
6 rnun 5681 . . 3 ran (𝐹𝐺) = (ran 𝐹 ∪ ran 𝐺)
7 forn 6258 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87ad2antrr 761 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran 𝐹 = 𝐵)
9 forn 6258 . . . . 5 (𝐺:𝐶onto𝐷 → ran 𝐺 = 𝐷)
109ad2antlr 762 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran 𝐺 = 𝐷)
118, 10uneq12d 3916 . . 3 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (ran 𝐹 ∪ ran 𝐺) = (𝐵𝐷))
126, 11syl5eq 2815 . 2 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran (𝐹𝐺) = (𝐵𝐷))
13 df-fo 6036 . 2 ((𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷) ↔ ((𝐹𝐺) Fn (𝐴𝐶) ∧ ran (𝐹𝐺) = (𝐵𝐷)))
145, 12, 13sylanbrc 698 1 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1629  cun 3718  cin 3719  c0 4060  ran crn 5249   Fn wfn 6025  ontowfo 6028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pr 5033
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ral 3064  df-rab 3068  df-v 3350  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-br 4784  df-opab 4844  df-id 5156  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-fun 6032  df-fn 6033  df-f 6034  df-fo 6036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator