Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  foresf1o Structured version   Visualization version   GIF version

Theorem foresf1o 29469
Description: From a surjective function, *choose* a subset of the domain, such that the restricted function is bijective. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Assertion
Ref Expression
foresf1o ((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem foresf1o
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fornex 7177 . . . 4 (𝐴𝑉 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
21imp 444 . . 3 ((𝐴𝑉𝐹:𝐴onto𝐵) → 𝐵 ∈ V)
3 foelrn 6418 . . . . . 6 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑧𝐴 𝑦 = (𝐹𝑧))
4 fofn 6155 . . . . . . . . . 10 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
5 eqcom 2658 . . . . . . . . . . 11 ((𝐹𝑧) = 𝑦𝑦 = (𝐹𝑧))
6 fniniseg 6378 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)))
76biimpar 501 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)) → 𝑧 ∈ (𝐹 “ {𝑦}))
87anassrs 681 . . . . . . . . . . 11 (((𝐹 Fn 𝐴𝑧𝐴) ∧ (𝐹𝑧) = 𝑦) → 𝑧 ∈ (𝐹 “ {𝑦}))
95, 8sylan2br 492 . . . . . . . . . 10 (((𝐹 Fn 𝐴𝑧𝐴) ∧ 𝑦 = (𝐹𝑧)) → 𝑧 ∈ (𝐹 “ {𝑦}))
104, 9sylanl1 683 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝑧𝐴) ∧ 𝑦 = (𝐹𝑧)) → 𝑧 ∈ (𝐹 “ {𝑦}))
1110ex 449 . . . . . . . 8 ((𝐹:𝐴onto𝐵𝑧𝐴) → (𝑦 = (𝐹𝑧) → 𝑧 ∈ (𝐹 “ {𝑦})))
1211reximdva 3046 . . . . . . 7 (𝐹:𝐴onto𝐵 → (∃𝑧𝐴 𝑦 = (𝐹𝑧) → ∃𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦})))
1312adantr 480 . . . . . 6 ((𝐹:𝐴onto𝐵𝑦𝐵) → (∃𝑧𝐴 𝑦 = (𝐹𝑧) → ∃𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦})))
143, 13mpd 15 . . . . 5 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦}))
1514adantll 750 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ 𝑦𝐵) → ∃𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦}))
1615ralrimiva 2995 . . 3 ((𝐴𝑉𝐹:𝐴onto𝐵) → ∀𝑦𝐵𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦}))
17 eleq1 2718 . . . 4 (𝑧 = (𝑔𝑦) → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑔𝑦) ∈ (𝐹 “ {𝑦})))
1817ac6sg 9348 . . 3 (𝐵 ∈ V → (∀𝑦𝐵𝑧𝐴 𝑧 ∈ (𝐹 “ {𝑦}) → ∃𝑔(𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))))
192, 16, 18sylc 65 . 2 ((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑔(𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦})))
20 frn 6091 . . . . 5 (𝑔:𝐵𝐴 → ran 𝑔𝐴)
2120ad2antrl 764 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → ran 𝑔𝐴)
22 vex 3234 . . . . . 6 𝑔 ∈ V
2322rnex 7142 . . . . 5 ran 𝑔 ∈ V
2423elpw 4197 . . . 4 (ran 𝑔 ∈ 𝒫 𝐴 ↔ ran 𝑔𝐴)
2521, 24sylibr 224 . . 3 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → ran 𝑔 ∈ 𝒫 𝐴)
26 fof 6153 . . . . . 6 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2726ad2antlr 763 . . . . 5 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → 𝐹:𝐴𝐵)
2827, 21fssresd 6109 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → (𝐹 ↾ ran 𝑔):ran 𝑔𝐵)
29 ffn 6083 . . . . . 6 (𝑔:𝐵𝐴𝑔 Fn 𝐵)
3029ad2antrl 764 . . . . 5 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → 𝑔 Fn 𝐵)
31 dffn3 6092 . . . . 5 (𝑔 Fn 𝐵𝑔:𝐵⟶ran 𝑔)
3230, 31sylib 208 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → 𝑔:𝐵⟶ran 𝑔)
33 fvres 6245 . . . . . . . 8 (𝑧 ∈ ran 𝑔 → ((𝐹 ↾ ran 𝑔)‘𝑧) = (𝐹𝑧))
3433adantl 481 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → ((𝐹 ↾ ran 𝑔)‘𝑧) = (𝐹𝑧))
3534fveq2d 6233 . . . . . 6 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → (𝑔‘((𝐹 ↾ ran 𝑔)‘𝑧)) = (𝑔‘(𝐹𝑧)))
36 nfv 1883 . . . . . . . . 9 𝑦(𝐴𝑉𝐹:𝐴onto𝐵)
37 nfv 1883 . . . . . . . . . 10 𝑦 𝑔:𝐵𝐴
38 nfra1 2970 . . . . . . . . . 10 𝑦𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦})
3937, 38nfan 1868 . . . . . . . . 9 𝑦(𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
4036, 39nfan 1868 . . . . . . . 8 𝑦((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦})))
41 nfv 1883 . . . . . . . 8 𝑦 𝑧 ∈ ran 𝑔
4240, 41nfan 1868 . . . . . . 7 𝑦(((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔)
43 simpr 476 . . . . . . . . . . 11 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝑔𝑦) = 𝑧)
4443fveq2d 6233 . . . . . . . . . 10 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝐹‘(𝑔𝑦)) = (𝐹𝑧))
454ad5antlr 775 . . . . . . . . . . 11 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → 𝐹 Fn 𝐴)
46 simplrr 818 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
4746ad2antrr 762 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
48 simplr 807 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → 𝑦𝐵)
49 rspa 2959 . . . . . . . . . . . 12 ((∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}) ∧ 𝑦𝐵) → (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
5047, 48, 49syl2anc 694 . . . . . . . . . . 11 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
51 fniniseg 6378 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝑔𝑦) ∈ (𝐹 “ {𝑦}) ↔ ((𝑔𝑦) ∈ 𝐴 ∧ (𝐹‘(𝑔𝑦)) = 𝑦)))
5251simplbda 653 . . . . . . . . . . 11 ((𝐹 Fn 𝐴 ∧ (𝑔𝑦) ∈ (𝐹 “ {𝑦})) → (𝐹‘(𝑔𝑦)) = 𝑦)
5345, 50, 52syl2anc 694 . . . . . . . . . 10 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝐹‘(𝑔𝑦)) = 𝑦)
5444, 53eqtr3d 2687 . . . . . . . . 9 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝐹𝑧) = 𝑦)
5554fveq2d 6233 . . . . . . . 8 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝑔‘(𝐹𝑧)) = (𝑔𝑦))
5655, 43eqtrd 2685 . . . . . . 7 ((((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) ∧ 𝑦𝐵) ∧ (𝑔𝑦) = 𝑧) → (𝑔‘(𝐹𝑧)) = 𝑧)
57 fvelrnb 6282 . . . . . . . . 9 (𝑔 Fn 𝐵 → (𝑧 ∈ ran 𝑔 ↔ ∃𝑦𝐵 (𝑔𝑦) = 𝑧))
5857biimpa 500 . . . . . . . 8 ((𝑔 Fn 𝐵𝑧 ∈ ran 𝑔) → ∃𝑦𝐵 (𝑔𝑦) = 𝑧)
5930, 58sylan 487 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → ∃𝑦𝐵 (𝑔𝑦) = 𝑧)
6042, 56, 59r19.29af 3105 . . . . . 6 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → (𝑔‘(𝐹𝑧)) = 𝑧)
6135, 60eqtrd 2685 . . . . 5 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑧 ∈ ran 𝑔) → (𝑔‘((𝐹 ↾ ran 𝑔)‘𝑧)) = 𝑧)
6261ralrimiva 2995 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → ∀𝑧 ∈ ran 𝑔(𝑔‘((𝐹 ↾ ran 𝑔)‘𝑧)) = 𝑧)
6332ffvelrnda 6399 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → (𝑔𝑦) ∈ ran 𝑔)
64 fvres 6245 . . . . . . . 8 ((𝑔𝑦) ∈ ran 𝑔 → ((𝐹 ↾ ran 𝑔)‘(𝑔𝑦)) = (𝐹‘(𝑔𝑦)))
6563, 64syl 17 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → ((𝐹 ↾ ran 𝑔)‘(𝑔𝑦)) = (𝐹‘(𝑔𝑦)))
664ad3antlr 767 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → 𝐹 Fn 𝐴)
67 simplrr 818 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
68 simpr 476 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → 𝑦𝐵)
6967, 68, 49syl2anc 694 . . . . . . . 8 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → (𝑔𝑦) ∈ (𝐹 “ {𝑦}))
7066, 69, 52syl2anc 694 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → (𝐹‘(𝑔𝑦)) = 𝑦)
7165, 70eqtrd 2685 . . . . . 6 ((((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) ∧ 𝑦𝐵) → ((𝐹 ↾ ran 𝑔)‘(𝑔𝑦)) = 𝑦)
7271ex 449 . . . . 5 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → (𝑦𝐵 → ((𝐹 ↾ ran 𝑔)‘(𝑔𝑦)) = 𝑦))
7340, 72ralrimi 2986 . . . 4 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → ∀𝑦𝐵 ((𝐹 ↾ ran 𝑔)‘(𝑔𝑦)) = 𝑦)
7428, 32, 62, 732fvidf1od 6593 . . 3 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → (𝐹 ↾ ran 𝑔):ran 𝑔1-1-onto𝐵)
75 reseq2 5423 . . . . 5 (𝑥 = ran 𝑔 → (𝐹𝑥) = (𝐹 ↾ ran 𝑔))
76 id 22 . . . . 5 (𝑥 = ran 𝑔𝑥 = ran 𝑔)
77 eqidd 2652 . . . . 5 (𝑥 = ran 𝑔𝐵 = 𝐵)
7875, 76, 77f1oeq123d 6171 . . . 4 (𝑥 = ran 𝑔 → ((𝐹𝑥):𝑥1-1-onto𝐵 ↔ (𝐹 ↾ ran 𝑔):ran 𝑔1-1-onto𝐵))
7978rspcev 3340 . . 3 ((ran 𝑔 ∈ 𝒫 𝐴 ∧ (𝐹 ↾ ran 𝑔):ran 𝑔1-1-onto𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto𝐵)
8025, 74, 79syl2anc 694 . 2 (((𝐴𝑉𝐹:𝐴onto𝐵) ∧ (𝑔:𝐵𝐴 ∧ ∀𝑦𝐵 (𝑔𝑦) ∈ (𝐹 “ {𝑦}))) → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto𝐵)
8119, 80exlimddv 1903 1 ((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  wss 3607  𝒫 cpw 4191  {csn 4210  ccnv 5142  ran crn 5144  cres 5145  cima 5146   Fn wfn 5921  wf 5922  ontowfo 5924  1-1-ontowf1o 5925  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576  ax-ac2 9323
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-en 7998  df-r1 8665  df-rank 8666  df-card 8803  df-ac 8977
This theorem is referenced by:  rabfodom  29470
  Copyright terms: Public domain W3C validator