![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fores | Structured version Visualization version GIF version |
Description: Restriction of an onto function. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
fores | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 6072 | . . 3 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
2 | 1 | anim1i 602 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹)) |
3 | df-fn 6034 | . . 3 ⊢ ((𝐹 ↾ 𝐴) Fn 𝐴 ↔ (Fun (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) = 𝐴)) | |
4 | df-ima 5262 | . . . . 5 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
5 | 4 | eqcomi 2780 | . . . 4 ⊢ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴) |
6 | df-fo 6037 | . . . 4 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴))) | |
7 | 5, 6 | mpbiran2 689 | . . 3 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴) Fn 𝐴) |
8 | ssdmres 5561 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐴) = 𝐴) | |
9 | 8 | anbi2i 609 | . . 3 ⊢ ((Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹) ↔ (Fun (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) = 𝐴)) |
10 | 3, 7, 9 | 3bitr4i 292 | . 2 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹)) |
11 | 2, 10 | sylibr 224 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ⊆ wss 3723 dom cdm 5249 ran crn 5250 ↾ cres 5251 “ cima 5252 Fun wfun 6025 Fn wfn 6026 –onto→wfo 6029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-res 5261 df-ima 5262 df-fun 6033 df-fn 6034 df-fo 6037 |
This theorem is referenced by: resdif 6298 f1oweALT 7299 imafi 8415 f1opwfi 8426 fodomfi2 9083 fin1a2lem7 9430 znnen 15147 connima 21449 1stcfb 21469 1stckgenlem 21577 qtoprest 21741 re2ndc 22824 uniiccdif 23566 opnmblALT 23591 mbfimaopnlem 23642 ffsrn 29844 erdszelem2 31512 ivthALT 32667 poimirlem26 33768 poimirlem27 33769 lmhmfgima 38180 |
Copyright terms: Public domain | W3C validator |