MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fopwdom Structured version   Visualization version   GIF version

Theorem fopwdom 8225
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
fopwdom ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)

Proof of Theorem fopwdom
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5627 . . . . . 6 (𝐹𝑎) ⊆ ran 𝐹
2 dfdm4 5463 . . . . . . 7 dom 𝐹 = ran 𝐹
3 fof 6268 . . . . . . . 8 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
4 fdm 6204 . . . . . . . 8 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
53, 4syl 17 . . . . . . 7 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
62, 5syl5eqr 2800 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐴)
71, 6syl5sseq 3786 . . . . 5 (𝐹:𝐴onto𝐵 → (𝐹𝑎) ⊆ 𝐴)
87adantl 473 . . . 4 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝐹𝑎) ⊆ 𝐴)
9 cnvexg 7269 . . . . . 6 (𝐹𝑉𝐹 ∈ V)
109adantr 472 . . . . 5 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐹 ∈ V)
11 imaexg 7260 . . . . 5 (𝐹 ∈ V → (𝐹𝑎) ∈ V)
12 elpwg 4302 . . . . 5 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
1310, 11, 123syl 18 . . . 4 ((𝐹𝑉𝐹:𝐴onto𝐵) → ((𝐹𝑎) ∈ 𝒫 𝐴 ↔ (𝐹𝑎) ⊆ 𝐴))
148, 13mpbird 247 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
1514a1d 25 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → (𝑎 ∈ 𝒫 𝐵 → (𝐹𝑎) ∈ 𝒫 𝐴))
16 imaeq2 5612 . . . . . . 7 ((𝐹𝑎) = (𝐹𝑏) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
1716adantl 473 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = (𝐹 “ (𝐹𝑏)))
18 simpllr 817 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝐹:𝐴onto𝐵)
19 simplrl 819 . . . . . . . 8 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 ∈ 𝒫 𝐵)
2019elpwid 4306 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐵)
21 foimacnv 6307 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2218, 20, 21syl2anc 696 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
23 simplrr 820 . . . . . . . 8 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏 ∈ 𝒫 𝐵)
2423elpwid 4306 . . . . . . 7 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐵)
25 foimacnv 6307 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑏𝐵) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2618, 24, 25syl2anc 696 . . . . . 6 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
2717, 22, 263eqtr3d 2794 . . . . 5 ((((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 = 𝑏)
2827ex 449 . . . 4 (((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
29 imaeq2 5612 . . . 4 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
3028, 29impbid1 215 . . 3 (((𝐹𝑉𝐹:𝐴onto𝐵) ∧ (𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵)) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
3130ex 449 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → ((𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏)))
32 rnexg 7255 . . . . 5 (𝐹𝑉 → ran 𝐹 ∈ V)
33 forn 6271 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
3433eleq1d 2816 . . . . 5 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
3532, 34syl5ibcom 235 . . . 4 (𝐹𝑉 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
3635imp 444 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐵 ∈ V)
37 pwexg 4991 . . 3 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
3836, 37syl 17 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ∈ V)
39 dmfex 7281 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐴 ∈ V)
403, 39sylan2 492 . . 3 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝐴 ∈ V)
41 pwexg 4991 . . 3 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
4240, 41syl 17 . 2 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐴 ∈ V)
4315, 31, 38, 42dom3d 8155 1 ((𝐹𝑉𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  Vcvv 3332  wss 3707  𝒫 cpw 4294   class class class wbr 4796  ccnv 5257  dom cdm 5258  ran crn 5259  cima 5261  wf 6037  ontowfo 6039  cdom 8111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-fv 6049  df-dom 8115
This theorem is referenced by:  pwdom  8269  wdompwdom  8640
  Copyright terms: Public domain W3C validator