MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foov Structured version   Visualization version   GIF version

Theorem foov 6974
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
foov (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑧,𝐶   𝑥,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem foov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dffo3 6538 . 2 (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤)))
2 fveq2 6353 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 6817 . . . . . . 7 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3syl6eqr 2812 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝑥𝐹𝑦))
54eqeq2d 2770 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (𝐹𝑤) ↔ 𝑧 = (𝑥𝐹𝑦)))
65rexxp 5420 . . . 4 (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦))
76ralbii 3118 . . 3 (∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤) ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦))
87anbi2i 732 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
91, 8bitri 264 1 (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wral 3050  wrex 3051  cop 4327   × cxp 5264  wf 6045  ontowfo 6047  cfv 6049  (class class class)co 6814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fo 6055  df-fv 6057  df-ov 6817
This theorem is referenced by:  iunfictbso  9147  xpsff1o  16450  mndpfo  17535  gafo  17949  isgrpo  27681  isgrpoi  27682  opidonOLD  33982  rngmgmbs4  34061  isgrpda  34085
  Copyright terms: Public domain W3C validator