MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footex Structured version   Visualization version   GIF version

Theorem footex 25834
Description: Lemma for foot 25835: existence part. (Contributed by Thierry Arnoux, 19-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
Assertion
Ref Expression
footex (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝜑,𝑥   𝑥,𝐶   𝑥,𝐼   𝑥,   𝑥,𝐿   𝑥,𝑃

Proof of Theorem footex
Dummy variables 𝑎 𝑏 𝑑 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . . . 9 𝑃 = (Base‘𝐺)
2 isperp.d . . . . . . . . 9 = (dist‘𝐺)
3 isperp.i . . . . . . . . 9 𝐼 = (Itv‘𝐺)
4 isperp.l . . . . . . . . 9 𝐿 = (LineG‘𝐺)
5 eqid 2761 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
6 isperp.g . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ TarskiG)
76ad3antrrr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝐺 ∈ TarskiG)
87ad2antrr 764 . . . . . . . . . . . . 13 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐺 ∈ TarskiG)
98ad2antrr 764 . . . . . . . . . . . 12 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝐺 ∈ TarskiG)
109ad2antrr 764 . . . . . . . . . . 11 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝐺 ∈ TarskiG)
1110ad2antrr 764 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝐺 ∈ TarskiG)
1211ad2antrr 764 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐺 ∈ TarskiG)
13 eqid 2761 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑥) = ((pInvG‘𝐺)‘𝑥)
14 foot.x . . . . . . . . . . . . 13 (𝜑𝐶𝑃)
1514ad3antrrr 768 . . . . . . . . . . . 12 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝐶𝑃)
1615ad2antrr 764 . . . . . . . . . . 11 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐶𝑃)
1716ad6antr 779 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝐶𝑃)
1817ad2antrr 764 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶𝑃)
19 simplr 809 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑑𝑃)
20 simp-4r 827 . . . . . . . . . . . 12 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑦𝑃)
2120ad2antrr 764 . . . . . . . . . . 11 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑦𝑃)
2221ad2antrr 764 . . . . . . . . . 10 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑦𝑃)
2322ad2antrr 764 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝑃)
24 simprr 813 . . . . . . . . . 10 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑑) = (𝑦 𝐶))
2524eqcomd 2767 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝐶) = (𝑦 𝑑))
261, 2, 3, 4, 5, 12, 13, 18, 19, 23, 25midexlem 25808 . . . . . . . 8 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ∃𝑥𝑃 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
2712adantr 472 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐺 ∈ TarskiG)
2823adantr 472 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑃)
29 simp-6r 835 . . . . . . . . . . . . . 14 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑧𝑃)
3029adantr 472 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝑃)
31 simprl 811 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝑃)
32 simp-4r 827 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑝𝑃)
3332ad4antr 771 . . . . . . . . . . . . . . 15 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑝𝑃)
3433adantr 472 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝𝑃)
35 simp-5r 831 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝)))
3635simprd 482 . . . . . . . . . . . . . . . 16 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑧) = (𝑦 𝑝))
3736eqcomd 2767 . . . . . . . . . . . . . . 15 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑝) = (𝑦 𝑧))
3837adantr 472 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑝) = (𝑦 𝑧))
39 simp-7r 839 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
4039adantr 472 . . . . . . . . . . . . . . . . 17 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
41 simpllr 817 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝑎𝑃)
4241ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝑎𝑃)
4342ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑎𝑃)
4443ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → 𝑎𝑃)
4544ad4antr 771 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝑃)
46 simplr 809 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → 𝑏𝑃)
4746ad10antr 795 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑏𝑃)
48 simp-11r 855 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏))
4948simprd 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝑏)
5049necomd 2988 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑏𝑎)
51 simp-9r 847 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶)))
5251simpld 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎 ∈ (𝑏𝐼𝑦))
531, 3, 4, 12, 47, 45, 23, 50, 52btwnlng3 25737 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑏𝐿𝑎))
541, 3, 4, 12, 45, 47, 23, 49, 53lncom 25738 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑎𝐿𝑏))
5548simpld 477 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐴 = (𝑎𝐿𝑏))
5654, 55eleqtrrd 2843 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝐴)
5756adantr 472 . . . . . . . . . . . . . . . . . . 19 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝐴)
58 foot.y . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 𝐶𝐴)
5958ad3antrrr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ¬ 𝐶𝐴)
6059ad10antr 795 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ¬ 𝐶𝐴)
6160adantr 472 . . . . . . . . . . . . . . . . . . 19 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ¬ 𝐶𝐴)
62 nelne2 3030 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝐴 ∧ ¬ 𝐶𝐴) → 𝑦𝐶)
6357, 61, 62syl2anc 696 . . . . . . . . . . . . . . . . . 18 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝐶)
6463necomd 2988 . . . . . . . . . . . . . . . . 17 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑦)
6540, 64eqnetrrd 3001 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑝)‘𝑦) ≠ 𝑦)
66 eqid 2761 . . . . . . . . . . . . . . . . . 18 ((pInvG‘𝐺)‘𝑝) = ((pInvG‘𝐺)‘𝑝)
671, 2, 3, 4, 5, 27, 34, 66, 28mirinv 25782 . . . . . . . . . . . . . . . . 17 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ((((pInvG‘𝐺)‘𝑝)‘𝑦) = 𝑦𝑝 = 𝑦))
6867necon3bid 2977 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ((((pInvG‘𝐺)‘𝑝)‘𝑦) ≠ 𝑦𝑝𝑦))
6965, 68mpbid 222 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝𝑦)
7069necomd 2988 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑝)
711, 2, 3, 27, 28, 34, 28, 30, 38, 70tgcgrneq 25599 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑧)
7271necomd 2988 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝑦)
73 eqid 2761 . . . . . . . . . . . . . . 15 ((pInvG‘𝐺)‘𝑧) = ((pInvG‘𝐺)‘𝑧)
74 simp-4r 827 . . . . . . . . . . . . . . . 16 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑞𝑃)
7574adantr 472 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑞𝑃)
76 simp-4r 827 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑧𝑃)
77 simplr 809 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → 𝑞𝑃)
781, 2, 3, 4, 5, 11, 76, 73, 77mircl 25777 . . . . . . . . . . . . . . . 16 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) ∈ 𝑃)
7978ad3antrrr 768 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) ∈ 𝑃)
8018adantr 472 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑃)
81 simpllr 817 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑑𝑃)
821, 2, 3, 4, 5, 27, 34, 66, 28mirbtwn 25774 . . . . . . . . . . . . . . . . . 18 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ ((((pInvG‘𝐺)‘𝑝)‘𝑦)𝐼𝑦))
8340oveq1d 6830 . . . . . . . . . . . . . . . . . 18 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐼𝑦) = ((((pInvG‘𝐺)‘𝑝)‘𝑦)𝐼𝑦))
8482, 83eleqtrrd 2843 . . . . . . . . . . . . . . . . 17 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ (𝐶𝐼𝑦))
85 simpllr 817 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎)))
8685simpld 477 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑝𝐼𝑞))
8786adantr 472 . . . . . . . . . . . . . . . . 17 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑝𝐼𝑞))
881, 2, 3, 27, 80, 34, 28, 75, 69, 84, 87tgbtwnouttr2 25611 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝐶𝐼𝑞))
891, 2, 3, 27, 80, 28, 75, 88tgbtwncom 25604 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑞𝐼𝐶))
90 simplrl 819 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑))
91 eqid 2761 . . . . . . . . . . . . . . . . . . 19 (cgrG‘𝐺) = (cgrG‘𝐺)
9251simprd 482 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
9339oveq2d 6831 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝐶) = (𝑎 (((pInvG‘𝐺)‘𝑝)‘𝑦)))
9492, 93eqtrd 2795 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑦) = (𝑎 (((pInvG‘𝐺)‘𝑝)‘𝑦)))
951, 2, 3, 4, 5, 12, 45, 33, 23israg 25813 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (⟨“𝑎𝑝𝑦”⟩ ∈ (∟G‘𝐺) ↔ (𝑎 𝑦) = (𝑎 (((pInvG‘𝐺)‘𝑝)‘𝑦))))
9694, 95mpbird 247 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑎𝑝𝑦”⟩ ∈ (∟G‘𝐺))
9785simprd 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑞) = (𝑦 𝑎))
981, 2, 3, 12, 45, 23, 45, 18, 92tgcgrcomlr 25596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑎) = (𝐶 𝑎))
9997, 98eqtr2d 2796 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝐶 𝑎) = (𝑦 𝑞))
1001, 3, 4, 12, 45, 47, 49tglinerflx1 25749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎 ∈ (𝑎𝐿𝑏))
101100, 55eleqtrrd 2843 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝐴)
102 nelne2 3030 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝐴 ∧ ¬ 𝐶𝐴) → 𝑎𝐶)
103101, 60, 102syl2anc 696 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑎𝐶)
104103necomd 2988 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝐶𝑎)
1051, 2, 3, 12, 18, 45, 23, 74, 99, 104tgcgrneq 25599 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦𝑞)
106105necomd 2988 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑞𝑦)
1071, 2, 3, 12, 33, 23, 74, 86tgbtwncom 25604 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑞𝐼𝑝))
10835simpld 477 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → 𝑦 ∈ (𝑎𝐼𝑧))
1091, 2, 3, 12, 23, 74, 23, 45, 97tgcgrcomlr 25596 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑞 𝑦) = (𝑎 𝑦))
1101, 2, 3, 12, 74, 45axtgcgrrflx 25582 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑞 𝑎) = (𝑎 𝑞))
11197eqcomd 2767 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑎) = (𝑦 𝑞))
1121, 2, 3, 12, 74, 23, 33, 45, 23, 29, 45, 74, 106, 107, 108, 109, 37, 110, 111axtg5seg 25585 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑝 𝑎) = (𝑧 𝑞))
1131, 2, 3, 12, 33, 45, 29, 74, 112tgcgrcomlr 25596 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑎 𝑝) = (𝑞 𝑧))
1141, 2, 3, 12, 23, 33, 23, 29, 37tgcgrcomlr 25596 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑝 𝑦) = (𝑧 𝑦))
1151, 2, 91, 12, 45, 33, 23, 74, 29, 23, 113, 114, 111trgcgr 25632 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑎𝑝𝑦”⟩(cgrG‘𝐺)⟨“𝑞𝑧𝑦”⟩)
1161, 2, 3, 4, 5, 12, 45, 33, 23, 91, 74, 29, 23, 96, 115ragcgr 25823 . . . . . . . . . . . . . . . . . 18 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑞𝑧𝑦”⟩ ∈ (∟G‘𝐺))
1171, 2, 3, 4, 5, 12, 74, 29, 23, 116ragcom 25814 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ⟨“𝑦𝑧𝑞”⟩ ∈ (∟G‘𝐺))
1181, 2, 3, 4, 5, 12, 23, 29, 74israg 25813 . . . . . . . . . . . . . . . . 17 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (⟨“𝑦𝑧𝑞”⟩ ∈ (∟G‘𝐺) ↔ (𝑦 𝑞) = (𝑦 (((pInvG‘𝐺)‘𝑧)‘𝑞))))
119117, 118mpbid 222 . . . . . . . . . . . . . . . 16 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (𝑦 𝑞) = (𝑦 (((pInvG‘𝐺)‘𝑧)‘𝑞)))
120119adantr 472 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑞) = (𝑦 (((pInvG‘𝐺)‘𝑧)‘𝑞)))
12125adantr 472 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝐶) = (𝑦 𝑑))
122 eqidd 2762 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (((pInvG‘𝐺)‘𝑧)‘𝑞) = (((pInvG‘𝐺)‘𝑧)‘𝑞))
123 simprr 813 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))
1241, 2, 3, 4, 5, 27, 73, 13, 75, 79, 28, 80, 81, 30, 31, 89, 90, 120, 121, 122, 123krippen 25807 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑧𝐼𝑥))
1251, 3, 4, 27, 30, 28, 31, 72, 124btwnlng3 25737 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ (𝑧𝐿𝑦))
1261, 3, 4, 27, 28, 30, 31, 71, 125lncom 25738 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ (𝑦𝐿𝑧))
127 isperp.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ran 𝐿)
128127ad5antr 775 . . . . . . . . . . . . . 14 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝐴 ∈ ran 𝐿)
129128ad9antr 791 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 ∈ ran 𝐿)
13045adantr 472 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝑃)
13192adantr 472 . . . . . . . . . . . . . . . . 17 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
132131eqcomd 2767 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑎 𝐶) = (𝑎 𝑦))
133103adantr 472 . . . . . . . . . . . . . . . 16 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝐶)
1341, 2, 3, 27, 130, 80, 130, 28, 132, 133tgcgrneq 25599 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝑦)
135108adantr 472 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦 ∈ (𝑎𝐼𝑧))
1361, 3, 4, 27, 130, 28, 30, 134, 135btwnlng3 25737 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧 ∈ (𝑎𝐿𝑦))
137101adantr 472 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑎𝐴)
1381, 3, 4, 27, 130, 28, 134, 134, 129, 137, 57tglinethru 25752 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 = (𝑎𝐿𝑦))
139136, 138eleqtrrd 2843 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑧𝐴)
1401, 3, 4, 27, 28, 30, 71, 71, 129, 57, 139tglinethru 25752 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐴 = (𝑦𝐿𝑧))
141126, 140eleqtrrd 2843 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝐴)
142 nelne2 3030 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ¬ 𝐶𝐴) → 𝑥𝐶)
143141, 61, 142syl2anc 696 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥𝐶)
144143necomd 2988 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶𝑥)
1451, 3, 4, 27, 80, 31, 144tgelrnln 25746 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐿𝑥) ∈ ran 𝐿)
1461, 3, 4, 27, 80, 31, 144tglinerflx2 25750 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ (𝐶𝐿𝑥))
147146, 141elind 3942 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑥 ∈ ((𝐶𝐿𝑥) ∩ 𝐴))
1481, 3, 4, 27, 80, 31, 144tglinerflx1 25749 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝐶 ∈ (𝐶𝐿𝑥))
14927adantr 472 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐺 ∈ TarskiG)
150130adantr 472 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎𝑃)
15128adantr 472 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦𝑃)
15234adantr 472 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑝𝑃)
15380adantr 472 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐶𝑃)
154 eqidd 2762 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐶 = 𝐶)
155 simpr 479 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
156 eqidd 2762 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎 = 𝑎)
157154, 155, 156s3eqd 13830 . . . . . . . . . . . . . . . . . 18 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝐶𝑦𝑎”⟩ = ⟨“𝐶𝑥𝑎”⟩)
15831adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑥𝑃)
15930adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧𝑃)
160106adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑞𝑦)
1611, 2, 3, 27, 28, 75, 28, 79, 120tgcgrcomlr 25596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑞 𝑦) = ((((pInvG‘𝐺)‘𝑧)‘𝑞) 𝑦))
1621, 2, 3, 4, 5, 27, 30, 73, 75mircgr 25773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 (((pInvG‘𝐺)‘𝑧)‘𝑞)) = (𝑧 𝑞))
163162eqcomd 2767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝑞) = (𝑧 (((pInvG‘𝐺)‘𝑧)‘𝑞)))
1641, 2, 3, 27, 30, 75, 30, 79, 163tgcgrcomlr 25596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑞 𝑧) = ((((pInvG‘𝐺)‘𝑧)‘𝑞) 𝑧))
165 eqidd 2762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑧) = (𝑦 𝑧))
1661, 2, 3, 27, 75, 28, 80, 79, 28, 81, 30, 30, 160, 89, 90, 161, 121, 164, 165axtg5seg 25585 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶 𝑧) = (𝑑 𝑧))
1671, 2, 3, 27, 80, 30, 81, 30, 166tgcgrcomlr 25596 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝐶) = (𝑧 𝑑))
168123oveq2d 6831 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝑑) = (𝑧 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
169167, 168eqtrd 2795 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑧 𝐶) = (𝑧 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
1701, 2, 3, 4, 5, 27, 30, 31, 80israg 25813 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (⟨“𝑧𝑥𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑧 𝐶) = (𝑧 (((pInvG‘𝐺)‘𝑥)‘𝐶))))
171169, 170mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝑧𝑥𝐶”⟩ ∈ (∟G‘𝐺))
172171adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑧𝑥𝐶”⟩ ∈ (∟G‘𝐺))
17372adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧𝑦)
174173, 155neeqtrd 3002 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧𝑥)
175132adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝑎 𝐶) = (𝑎 𝑦))
176133adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎𝐶)
1771, 2, 3, 149, 150, 153, 150, 151, 175, 176tgcgrneq 25599 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑎𝑦)
178177necomd 2988 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦𝑎)
179136adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧 ∈ (𝑎𝐿𝑦))
1801, 3, 4, 149, 151, 150, 159, 178, 179lncom 25738 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧 ∈ (𝑦𝐿𝑎))
181155oveq1d 6830 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝑦𝐿𝑎) = (𝑥𝐿𝑎))
182180, 181eleqtrd 2842 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑧 ∈ (𝑥𝐿𝑎))
183182orcd 406 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝑧 ∈ (𝑥𝐿𝑎) ∨ 𝑥 = 𝑎))
1841, 2, 3, 4, 5, 149, 159, 158, 153, 150, 172, 174, 183ragcol 25815 . . . . . . . . . . . . . . . . . . 19 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑎𝑥𝐶”⟩ ∈ (∟G‘𝐺))
1851, 2, 3, 4, 5, 149, 150, 158, 153, 184ragcom 25814 . . . . . . . . . . . . . . . . . 18 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝐶𝑥𝑎”⟩ ∈ (∟G‘𝐺))
186157, 185eqeltrd 2840 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝐶𝑦𝑎”⟩ ∈ (∟G‘𝐺))
18764adantr 472 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝐶𝑦)
1881, 2, 3, 27, 80, 34, 28, 84tgbtwncom 25604 . . . . . . . . . . . . . . . . . . 19 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑝 ∈ (𝑦𝐼𝐶))
1891, 4, 3, 27, 28, 34, 80, 188btwncolg3 25673 . . . . . . . . . . . . . . . . . 18 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶 ∈ (𝑦𝐿𝑝) ∨ 𝑦 = 𝑝))
190189adantr 472 . . . . . . . . . . . . . . . . 17 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → (𝐶 ∈ (𝑦𝐿𝑝) ∨ 𝑦 = 𝑝))
1911, 2, 3, 4, 5, 149, 153, 151, 150, 152, 186, 187, 190ragcol 25815 . . . . . . . . . . . . . . . 16 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑝𝑦𝑎”⟩ ∈ (∟G‘𝐺))
1921, 2, 3, 4, 5, 149, 152, 151, 150, 191ragcom 25814 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑎𝑦𝑝”⟩ ∈ (∟G‘𝐺))
19396ad2antrr 764 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ⟨“𝑎𝑝𝑦”⟩ ∈ (∟G‘𝐺))
1941, 2, 3, 4, 5, 149, 150, 151, 152, 192, 193ragflat 25820 . . . . . . . . . . . . . 14 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑝)
19570adantr 472 . . . . . . . . . . . . . . 15 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → 𝑦𝑝)
196195neneqd 2938 . . . . . . . . . . . . . 14 ((((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) ∧ 𝑦 = 𝑥) → ¬ 𝑦 = 𝑝)
197194, 196pm2.65da 601 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ¬ 𝑦 = 𝑥)
198197neqned 2940 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → 𝑦𝑥)
199123oveq2d 6831 . . . . . . . . . . . . . . 15 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝑑) = (𝑦 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
200121, 199eqtrd 2795 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑦 𝐶) = (𝑦 (((pInvG‘𝐺)‘𝑥)‘𝐶)))
2011, 2, 3, 4, 5, 27, 28, 31, 80israg 25813 . . . . . . . . . . . . . 14 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (⟨“𝑦𝑥𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝑦 𝐶) = (𝑦 (((pInvG‘𝐺)‘𝑥)‘𝐶))))
202200, 201mpbird 247 . . . . . . . . . . . . 13 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝑦𝑥𝐶”⟩ ∈ (∟G‘𝐺))
2031, 2, 3, 4, 5, 27, 28, 31, 80, 202ragcom 25814 . . . . . . . . . . . 12 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → ⟨“𝐶𝑥𝑦”⟩ ∈ (∟G‘𝐺))
2041, 2, 3, 4, 27, 145, 129, 147, 148, 57, 144, 198, 203ragperp 25833 . . . . . . . . . . 11 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
205141, 204jca 555 . . . . . . . . . 10 (((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) ∧ (𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶))) → (𝑥𝐴 ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴))
206205ex 449 . . . . . . . . 9 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ((𝑥𝑃𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶)) → (𝑥𝐴 ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)))
207206reximdv2 3153 . . . . . . . 8 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → (∃𝑥𝑃 𝑑 = (((pInvG‘𝐺)‘𝑥)‘𝐶) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴))
20826, 207mpd 15 . . . . . . 7 ((((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) ∧ 𝑑𝑃) ∧ (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2091, 2, 3, 11, 78, 22, 22, 17axtgsegcon 25584 . . . . . . 7 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → ∃𝑑𝑃 (𝑦 ∈ ((((pInvG‘𝐺)‘𝑧)‘𝑞)𝐼𝑑) ∧ (𝑦 𝑑) = (𝑦 𝐶)))
210208, 209r19.29a 3217 . . . . . 6 ((((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) ∧ 𝑞𝑃) ∧ (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2111, 2, 3, 10, 32, 21, 21, 44axtgsegcon 25584 . . . . . 6 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → ∃𝑞𝑃 (𝑦 ∈ (𝑝𝐼𝑞) ∧ (𝑦 𝑞) = (𝑦 𝑎)))
212210, 211r19.29a 3217 . . . . 5 ((((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) ∧ 𝑧𝑃) ∧ (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
213 simplr 809 . . . . . 6 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → 𝑝𝑃)
2141, 2, 3, 9, 43, 20, 20, 213axtgsegcon 25584 . . . . 5 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → ∃𝑧𝑃 (𝑦 ∈ (𝑎𝐼𝑧) ∧ (𝑦 𝑧) = (𝑦 𝑝)))
215212, 214r19.29a 3217 . . . 4 ((((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) ∧ 𝑝𝑃) ∧ 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦)) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
216 simplr 809 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → 𝑦𝑃)
217 simprr 813 . . . . 5 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → (𝑎 𝑦) = (𝑎 𝐶))
2181, 2, 3, 4, 5, 8, 66, 216, 16, 42, 217midexlem 25808 . . . 4 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → ∃𝑝𝑃 𝐶 = (((pInvG‘𝐺)‘𝑝)‘𝑦))
219215, 218r19.29a 3217 . . 3 ((((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) ∧ 𝑦𝑃) ∧ (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶))) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2201, 2, 3, 7, 46, 41, 41, 15axtgsegcon 25584 . . 3 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ∃𝑦𝑃 (𝑎 ∈ (𝑏𝐼𝑦) ∧ (𝑎 𝑦) = (𝑎 𝐶)))
221219, 220r19.29a 3217 . 2 ((((𝜑𝑎𝑃) ∧ 𝑏𝑃) ∧ (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏)) → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
2221, 3, 4, 6, 127tgisline 25743 . 2 (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝐴 = (𝑎𝐿𝑏) ∧ 𝑎𝑏))
223221, 222r19.29vva 3220 1 (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1632  wcel 2140  wne 2933  wrex 3052   class class class wbr 4805  ran crn 5268  cfv 6050  (class class class)co 6815  ⟨“cs3 13808  Basecbs 16080  distcds 16173  TarskiGcstrkg 25550  Itvcitv 25556  LineGclng 25557  cgrGccgrg 25626  pInvGcmir 25768  ∟Gcrag 25809  ⟂Gcperpg 25811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-xnn0 11577  df-z 11591  df-uz 11901  df-fz 12541  df-fzo 12681  df-hash 13333  df-word 13506  df-concat 13508  df-s1 13509  df-s2 13814  df-s3 13815  df-trkgc 25568  df-trkgb 25569  df-trkgcb 25570  df-trkg 25573  df-cgrg 25627  df-leg 25699  df-mir 25769  df-rag 25810  df-perpg 25812
This theorem is referenced by:  foot  25835  colperpexlem3  25845  opphl  25867  lmieu  25897  trgcopy  25917
  Copyright terms: Public domain W3C validator