![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version |
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 5511 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
2 | fof 6153 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
3 | fdm 6089 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
5 | 4 | imaeq2d 5501 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
6 | forn 6156 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
7 | 1, 5, 6 | 3eqtr3a 2709 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 dom cdm 5143 ran crn 5144 “ cima 5146 ⟶wf 5922 –onto→wfo 5924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-fn 5929 df-f 5930 df-fo 5932 |
This theorem is referenced by: foimacnv 6192 domunfican 8274 fiint 8278 fodomfi 8280 cantnflt2 8608 cantnfp1lem3 8615 enfin1ai 9244 symgfixelsi 17901 dprdf1o 18477 lmimlbs 20223 cncmp 21243 cmpfi 21259 cnconn 21273 qtopval2 21547 elfm3 21801 rnelfm 21804 fmfnfmlem2 21806 fmfnfm 21809 eupthvdres 27213 pjordi 29160 qtophaus 30031 poimirlem1 33540 poimirlem2 33541 poimirlem3 33542 poimirlem4 33543 poimirlem5 33544 poimirlem6 33545 poimirlem7 33546 poimirlem9 33548 poimirlem10 33549 poimirlem11 33550 poimirlem12 33551 poimirlem14 33553 poimirlem16 33555 poimirlem17 33556 poimirlem19 33558 poimirlem20 33559 poimirlem22 33561 poimirlem23 33562 poimirlem24 33563 poimirlem25 33564 poimirlem29 33568 poimirlem31 33570 ovoliunnfl 33581 voliunnfl 33583 volsupnfl 33584 ismtybndlem 33735 kelac1 37950 gicabl 37986 |
Copyright terms: Public domain | W3C validator |