MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foima Structured version   Visualization version   GIF version

Theorem foima 6158
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
Assertion
Ref Expression
foima (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)

Proof of Theorem foima
StepHypRef Expression
1 imadmrn 5511 . 2 (𝐹 “ dom 𝐹) = ran 𝐹
2 fof 6153 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
3 fdm 6089 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
42, 3syl 17 . . 3 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
54imaeq2d 5501 . 2 (𝐹:𝐴onto𝐵 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
6 forn 6156 . 2 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
71, 5, 63eqtr3a 2709 1 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  dom cdm 5143  ran crn 5144  cima 5146  wf 5922  ontowfo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-fn 5929  df-f 5930  df-fo 5932
This theorem is referenced by:  foimacnv  6192  domunfican  8274  fiint  8278  fodomfi  8280  cantnflt2  8608  cantnfp1lem3  8615  enfin1ai  9244  symgfixelsi  17901  dprdf1o  18477  lmimlbs  20223  cncmp  21243  cmpfi  21259  cnconn  21273  qtopval2  21547  elfm3  21801  rnelfm  21804  fmfnfmlem2  21806  fmfnfm  21809  eupthvdres  27213  pjordi  29160  qtophaus  30031  poimirlem1  33540  poimirlem2  33541  poimirlem3  33542  poimirlem4  33543  poimirlem5  33544  poimirlem6  33545  poimirlem7  33546  poimirlem9  33548  poimirlem10  33549  poimirlem11  33550  poimirlem12  33551  poimirlem14  33553  poimirlem16  33555  poimirlem17  33556  poimirlem19  33558  poimirlem20  33559  poimirlem22  33561  poimirlem23  33562  poimirlem24  33563  poimirlem25  33564  poimirlem29  33568  poimirlem31  33570  ovoliunnfl  33581  voliunnfl  33583  volsupnfl  33584  ismtybndlem  33735  kelac1  37950  gicabl  37986
  Copyright terms: Public domain W3C validator