![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fofun | Structured version Visualization version GIF version |
Description: An onto mapping is a function. (Contributed by NM, 29-Mar-2008.) |
Ref | Expression |
---|---|
fofun | ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6278 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffund 6211 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 6044 –onto→wfo 6048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-in 3723 df-ss 3730 df-fn 6053 df-f 6054 df-fo 6056 |
This theorem is referenced by: foimacnv 6317 resdif 6320 fococnv2 6325 fornex 7302 fodomfi2 9094 fin1a2lem7 9441 brdom3 9563 1stf1 17054 1stf2 17055 2ndf1 17057 2ndf2 17058 1stfcl 17059 2ndfcl 17060 qtopcld 21739 qtopcmap 21745 elfm3 21976 bcthlem4 23345 uniiccdif 23567 grporn 27706 xppreima 29780 qtophaus 30234 bdayimaon 32171 nosupno 32177 bdayfun 32216 poimirlem26 33767 poimirlem27 33768 ovoliunnfl 33783 voliunnfl 33785 |
Copyright terms: Public domain | W3C validator |