![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fofi | Structured version Visualization version GIF version |
Description: If a function has a finite domain, its range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
Ref | Expression |
---|---|
fofi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodomfi 8280 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | |
2 | domfi 8222 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
3 | 1, 2 | syldan 486 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 class class class wbr 4685 –onto→wfo 5924 ≼ cdom 7995 Fincfn 7997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-fin 8001 |
This theorem is referenced by: f1fi 8294 imafi 8300 f1opwfi 8311 indexfi 8315 intrnfi 8363 infpwfien 8923 ttukeylem6 9374 fseqsupcl 12816 fiinfnf1o 13178 vdwlem6 15737 0ram2 15772 0ramcl 15774 mplsubrglem 19487 tgcmp 21252 hauscmplem 21257 1stcfb 21296 comppfsc 21383 1stckgenlem 21404 ptcnplem 21472 txtube 21491 txcmplem1 21492 tmdgsum2 21947 tsmsf1o 21995 tsmsxplem1 22003 ovolicc2lem4 23334 i1fadd 23507 i1fmul 23508 itg1addlem4 23511 i1fmulc 23515 mbfi1fseqlem4 23530 limciun 23703 edgusgrnbfin 26319 erdszelem2 31300 mvrsfpw 31529 itg2addnclem2 33592 istotbnd3 33700 sstotbnd 33704 prdsbnd 33722 cntotbnd 33725 heiborlem1 33740 heibor 33750 lmhmfgima 37971 |
Copyright terms: Public domain | W3C validator |