![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3690 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | 1 | anim2i 592 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
3 | df-fo 5932 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | df-f 5930 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3imtr4i 281 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ⊆ wss 3607 ran crn 5144 Fn wfn 5921 ⟶wf 5922 –onto→wfo 5924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-in 3614 df-ss 3621 df-f 5930 df-fo 5932 |
This theorem is referenced by: fofun 6154 fofn 6155 dffo2 6157 foima 6158 resdif 6195 fimacnvinrn 6388 fconst5 6512 cocan2 6587 foeqcnvco 6595 soisoi 6618 ffoss 7169 fornex 7177 algrflem 7331 tposf2 7421 smoiso2 7511 mapsn 7941 ssdomg 8043 fopwdom 8109 unfilem2 8266 fodomfib 8281 fofinf1o 8282 brwdomn0 8515 fowdom 8517 wdomtr 8521 wdomima2g 8532 fodomfi2 8921 wdomfil 8922 alephiso 8959 iunfictbso 8975 cofsmo 9129 isf32lem10 9222 fin1a2lem7 9266 fodomb 9386 iunfo 9399 tskuni 9643 gruima 9662 gruen 9672 axpre-sup 10028 focdmex 13179 supcvg 14632 ruclem13 15015 imasval 16218 imasle 16230 imasaddfnlem 16235 imasaddflem 16237 imasvscafn 16244 imasvscaf 16246 imasless 16247 homadm 16737 homacd 16738 dmaf 16746 cdaf 16747 setcepi 16785 imasmnd2 17374 imasgrp2 17577 mhmid 17583 mhmmnd 17584 mhmfmhm 17585 ghmgrp 17586 efgred2 18212 ghmfghm 18282 ghmcyg 18343 gsumval3 18354 gsumzoppg 18390 gsum2dlem2 18416 imasring 18665 znunit 19960 znrrg 19962 cygznlem2a 19964 cygznlem3 19966 cncmp 21243 cnconn 21273 1stcfb 21296 dfac14 21469 qtopval2 21547 qtopuni 21553 qtopid 21556 qtopcld 21564 qtopcn 21565 qtopeu 21567 qtophmeo 21668 elfm3 21801 ovoliunnul 23321 uniiccdif 23392 dchrzrhcl 25015 lgsdchrval 25124 rpvmasumlem 25221 dchrmusum2 25228 dchrvmasumlem3 25233 dchrisum0ff 25241 dchrisum0flblem1 25242 rpvmasum2 25246 dchrisum0re 25247 dchrisum0lem2a 25251 grpocl 27482 grporndm 27492 vafval 27586 smfval 27588 nvgf 27601 vsfval 27616 hhssabloilem 28246 pjhf 28695 elunop 28859 unopf1o 28903 cnvunop 28905 pjinvari 29178 foresf1o 29469 rabfodom 29470 iunrdx 29508 xppreima 29577 qtophaus 30031 sigapildsys 30353 carsgclctunlem3 30510 mtyf 31575 nodense 31967 bdaydm 32015 bdayelon 32017 poimirlem26 33565 poimirlem27 33566 volsupnfl 33584 cocanfo 33642 exidreslem 33806 rngosn3 33853 rngodm1dm2 33861 founiiun 39674 founiiun0 39691 mapsnd 39702 issalnnd 40881 sge0fodjrnlem 40951 ismeannd 41002 caragenunicl 41059 fargshiftfo 41703 |
Copyright terms: Public domain | W3C validator |