![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foeq123d | Structured version Visualization version GIF version |
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
foeq123d | ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | foeq1 6224 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐴–onto→𝐶)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐴–onto→𝐶)) |
4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | foeq2 6225 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) |
7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
8 | foeq3 6226 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
10 | 3, 6, 9 | 3bitrd 294 | 1 ⊢ (𝜑 → (𝐹:𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1596 –onto→wfo 5999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-fun 6003 df-fn 6004 df-fo 6007 |
This theorem is referenced by: fullfo 16694 cofull 16716 resgrpplusfrn 17558 efabl 24416 iseupth 27274 |
Copyright terms: Public domain | W3C validator |