![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foelrn | Structured version Visualization version GIF version |
Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) |
Ref | Expression |
---|---|
foelrn | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo3 6489 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | |
2 | 1 | simprbi 483 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
3 | eqeq1 2728 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑦 = (𝐹‘𝑥) ↔ 𝐶 = (𝐹‘𝑥))) | |
4 | 3 | rexbidv 3154 | . . 3 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥))) |
5 | 4 | rspccva 3412 | . 2 ⊢ ((∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
6 | 2, 5 | sylan 489 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ∀wral 3014 ∃wrex 3015 ⟶wf 5997 –onto→wfo 5999 ‘cfv 6001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-fo 6007 df-fv 6009 |
This theorem is referenced by: foco2 6494 foco2OLD 6495 fofinf1o 8357 fodomacn 8992 iunfictbso 9050 cff1 9193 cofsmo 9204 axcclem 9392 konigthlem 9503 tskuni 9718 fulli 16695 efgredlemc 18279 efgrelexlemb 18284 efgredeu 18286 ghmcyg 18418 znfld 20032 znrrg 20037 cygznlem3 20041 ovoliunnul 23396 lgsdchr 25200 foresf1o 29571 iunrdx 29610 crngohomfo 34037 fourierdlem20 40764 fourierdlem52 40795 fourierdlem63 40806 fourierdlem64 40807 fourierdlem65 40808 |
Copyright terms: Public domain | W3C validator |