![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foconst | Structured version Visualization version GIF version |
Description: A nonzero constant function is onto. (Contributed by NM, 12-Jan-2007.) |
Ref | Expression |
---|---|
foconst | ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → 𝐹:𝐴–onto→{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frel 6211 | . . . . 5 ⊢ (𝐹:𝐴⟶{𝐵} → Rel 𝐹) | |
2 | relrn0 5538 | . . . . . 6 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ ran 𝐹 = ∅)) | |
3 | 2 | necon3abid 2968 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅)) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶{𝐵} → (𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅)) |
5 | frn 6214 | . . . . . 6 ⊢ (𝐹:𝐴⟶{𝐵} → ran 𝐹 ⊆ {𝐵}) | |
6 | sssn 4503 | . . . . . 6 ⊢ (ran 𝐹 ⊆ {𝐵} ↔ (ran 𝐹 = ∅ ∨ ran 𝐹 = {𝐵})) | |
7 | 5, 6 | sylib 208 | . . . . 5 ⊢ (𝐹:𝐴⟶{𝐵} → (ran 𝐹 = ∅ ∨ ran 𝐹 = {𝐵})) |
8 | 7 | ord 391 | . . . 4 ⊢ (𝐹:𝐴⟶{𝐵} → (¬ ran 𝐹 = ∅ → ran 𝐹 = {𝐵})) |
9 | 4, 8 | sylbid 230 | . . 3 ⊢ (𝐹:𝐴⟶{𝐵} → (𝐹 ≠ ∅ → ran 𝐹 = {𝐵})) |
10 | 9 | imdistani 728 | . 2 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → (𝐹:𝐴⟶{𝐵} ∧ ran 𝐹 = {𝐵})) |
11 | dffo2 6280 | . 2 ⊢ (𝐹:𝐴–onto→{𝐵} ↔ (𝐹:𝐴⟶{𝐵} ∧ ran 𝐹 = {𝐵})) | |
12 | 10, 11 | sylibr 224 | 1 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → 𝐹:𝐴–onto→{𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1632 ≠ wne 2932 ⊆ wss 3715 ∅c0 4058 {csn 4321 ran crn 5267 Rel wrel 5271 ⟶wf 6045 –onto→wfo 6047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 df-fun 6051 df-fn 6052 df-f 6053 df-fo 6055 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |