![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fo2nd | Structured version Visualization version GIF version |
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo2nd | ⊢ 2nd :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4938 | . . . . 5 ⊢ {𝑥} ∈ V | |
2 | 1 | rnex 7142 | . . . 4 ⊢ ran {𝑥} ∈ V |
3 | 2 | uniex 6995 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
4 | df-2nd 7211 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
5 | 3, 4 | fnmpti 6060 | . 2 ⊢ 2nd Fn V |
6 | 4 | rnmpt 5403 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
7 | vex 3234 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | opex 4962 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
9 | 7, 7 | op2nda 5658 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
10 | 9 | eqcomi 2660 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
11 | sneq 4220 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
12 | 11 | rneqd 5385 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
13 | 12 | unieqd 4478 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
14 | 13 | eqeq2d 2661 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ ran {𝑥} ↔ 𝑦 = ∪ ran {〈𝑦, 𝑦〉})) |
15 | 14 | rspcev 3340 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
16 | 8, 10, 15 | mp2an 708 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
17 | 7, 16 | 2th 254 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
18 | 17 | abbi2i 2767 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
19 | 6, 18 | eqtr4i 2676 | . 2 ⊢ ran 2nd = V |
20 | df-fo 5932 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
21 | 5, 19, 20 | mpbir2an 975 | 1 ⊢ 2nd :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 {cab 2637 ∃wrex 2942 Vcvv 3231 {csn 4210 〈cop 4216 ∪ cuni 4468 ran crn 5144 Fn wfn 5921 –onto→wfo 5924 2nd c2nd 7209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-fun 5928 df-fn 5929 df-fo 5932 df-2nd 7211 |
This theorem is referenced by: br2ndeqg 7233 2ndcof 7241 df2nd2 7309 2ndconst 7311 iunfo 9399 cdaf 16747 2ndf1 16882 2ndf2 16883 2ndfcl 16885 gsum2dlem2 18416 upxp 21474 uptx 21476 cnmpt2nd 21520 uniiccdif 23392 xppreima 29577 xppreima2 29578 2ndpreima 29613 gsummpt2d 29909 cnre2csqima 30085 filnetlem4 32501 |
Copyright terms: Public domain | W3C validator |