MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2nd Structured version   Visualization version   GIF version

Theorem fo2nd 7231
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 4938 . . . . 5 {𝑥} ∈ V
21rnex 7142 . . . 4 ran {𝑥} ∈ V
32uniex 6995 . . 3 ran {𝑥} ∈ V
4 df-2nd 7211 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
53, 4fnmpti 6060 . 2 2nd Fn V
64rnmpt 5403 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
7 vex 3234 . . . . 5 𝑦 ∈ V
8 opex 4962 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op2nda 5658 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2660 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
11 sneq 4220 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211rneqd 5385 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1312unieqd 4478 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413eqeq2d 2661 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = ran {𝑥} ↔ 𝑦 = ran {⟨𝑦, 𝑦⟩}))
1514rspcev 3340 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
168, 10, 15mp2an 708 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
177, 162th 254 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1817abbi2i 2767 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
196, 18eqtr4i 2676 . 2 ran 2nd = V
20 df-fo 5932 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
215, 19, 20mpbir2an 975 1 2nd :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030  {cab 2637  wrex 2942  Vcvv 3231  {csn 4210  cop 4216   cuni 4468  ran crn 5144   Fn wfn 5921  ontowfo 5924  2nd c2nd 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-fun 5928  df-fn 5929  df-fo 5932  df-2nd 7211
This theorem is referenced by:  br2ndeqg  7233  2ndcof  7241  df2nd2  7309  2ndconst  7311  iunfo  9399  cdaf  16747  2ndf1  16882  2ndf2  16883  2ndfcl  16885  gsum2dlem2  18416  upxp  21474  uptx  21476  cnmpt2nd  21520  uniiccdif  23392  xppreima  29577  xppreima2  29578  2ndpreima  29613  gsummpt2d  29909  cnre2csqima  30085  filnetlem4  32501
  Copyright terms: Public domain W3C validator