![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fo1st | Structured version Visualization version GIF version |
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo1st | ⊢ 1st :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4938 | . . . . 5 ⊢ {𝑥} ∈ V | |
2 | 1 | dmex 7141 | . . . 4 ⊢ dom {𝑥} ∈ V |
3 | 2 | uniex 6995 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
4 | df-1st 7210 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
5 | 3, 4 | fnmpti 6060 | . 2 ⊢ 1st Fn V |
6 | 4 | rnmpt 5403 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
7 | vex 3234 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | opex 4962 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
9 | 7, 7 | op1sta 5654 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
10 | 9 | eqcomi 2660 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
11 | sneq 4220 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
12 | 11 | dmeqd 5358 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
13 | 12 | unieqd 4478 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
14 | 13 | eqeq2d 2661 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ dom {𝑥} ↔ 𝑦 = ∪ dom {〈𝑦, 𝑦〉})) |
15 | 14 | rspcev 3340 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
16 | 8, 10, 15 | mp2an 708 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
17 | 7, 16 | 2th 254 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
18 | 17 | abbi2i 2767 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
19 | 6, 18 | eqtr4i 2676 | . 2 ⊢ ran 1st = V |
20 | df-fo 5932 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
21 | 5, 19, 20 | mpbir2an 975 | 1 ⊢ 1st :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 {cab 2637 ∃wrex 2942 Vcvv 3231 {csn 4210 〈cop 4216 ∪ cuni 4468 dom cdm 5143 ran crn 5144 Fn wfn 5921 –onto→wfo 5924 1st c1st 7208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-fun 5928 df-fn 5929 df-fo 5932 df-1st 7210 |
This theorem is referenced by: br1steqg 7232 1stcof 7240 df1st2 7308 1stconst 7310 fsplit 7327 algrflem 7331 fpwwe 9506 axpre-sup 10028 homadm 16737 homacd 16738 dmaf 16746 cdaf 16747 1stf1 16879 1stf2 16880 1stfcl 16884 upxp 21474 uptx 21476 cnmpt1st 21519 bcthlem4 23170 uniiccdif 23392 vafval 27586 smfval 27588 0vfval 27589 vsfval 27616 xppreima 29577 xppreima2 29578 1stpreimas 29611 1stpreima 29612 gsummpt2d 29909 cnre2csqima 30085 poimirlem26 33565 poimirlem27 33566 |
Copyright terms: Public domain | W3C validator |