MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunsn Structured version   Visualization version   GIF version

Theorem fnunsn 6036
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
fnunop.x (𝜑𝑋 ∈ V)
fnunop.y (𝜑𝑌 ∈ V)
fnunop.f (𝜑𝐹 Fn 𝐷)
fnunop.g 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})
fnunop.e 𝐸 = (𝐷 ∪ {𝑋})
fnunop.d (𝜑 → ¬ 𝑋𝐷)
Assertion
Ref Expression
fnunsn (𝜑𝐺 Fn 𝐸)

Proof of Theorem fnunsn
StepHypRef Expression
1 fnunop.f . . 3 (𝜑𝐹 Fn 𝐷)
2 fnunop.x . . . 4 (𝜑𝑋 ∈ V)
3 fnunop.y . . . 4 (𝜑𝑌 ∈ V)
4 fnsng 5976 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
52, 3, 4syl2anc 694 . . 3 (𝜑 → {⟨𝑋, 𝑌⟩} Fn {𝑋})
6 fnunop.d . . . 4 (𝜑 → ¬ 𝑋𝐷)
7 disjsn 4278 . . . 4 ((𝐷 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐷)
86, 7sylibr 224 . . 3 (𝜑 → (𝐷 ∩ {𝑋}) = ∅)
9 fnun 6035 . . 3 (((𝐹 Fn 𝐷 ∧ {⟨𝑋, 𝑌⟩} Fn {𝑋}) ∧ (𝐷 ∩ {𝑋}) = ∅) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
101, 5, 8, 9syl21anc 1365 . 2 (𝜑 → (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
11 fnunop.g . . . 4 𝐺 = (𝐹 ∪ {⟨𝑋, 𝑌⟩})
1211fneq1i 6023 . . 3 (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸)
13 fnunop.e . . . 4 𝐸 = (𝐷 ∪ {𝑋})
1413fneq2i 6024 . . 3 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
1512, 14bitri 264 . 2 (𝐺 Fn 𝐸 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}) Fn (𝐷 ∪ {𝑋}))
1610, 15sylibr 224 1 (𝜑𝐺 Fn 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1523  wcel 2030  Vcvv 3231  cun 3605  cin 3606  c0 3948  {csn 4210  cop 4216   Fn wfn 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-fun 5928  df-fn 5929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator