![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnunirn | Structured version Visualization version GIF version |
Description: Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
fnunirn | ⊢ (𝐹 Fn 𝐼 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝐼 𝐴 ∈ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6149 | . . 3 ⊢ (𝐹 Fn 𝐼 → Fun 𝐹) | |
2 | elunirn 6673 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐼 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥))) |
4 | fndm 6151 | . . 3 ⊢ (𝐹 Fn 𝐼 → dom 𝐹 = 𝐼) | |
5 | 4 | rexeqdv 3284 | . 2 ⊢ (𝐹 Fn 𝐼 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐼 𝐴 ∈ (𝐹‘𝑥))) |
6 | 3, 5 | bitrd 268 | 1 ⊢ (𝐹 Fn 𝐼 → (𝐴 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝐼 𝐴 ∈ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2139 ∃wrex 3051 ∪ cuni 4588 dom cdm 5266 ran crn 5267 Fun wfun 6043 Fn wfn 6044 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: itunitc 9455 wunex2 9772 mreunirn 16483 arwhoma 16916 filunirn 21907 xmetunirn 22363 abfmpunirn 29782 cmpcref 30247 neibastop2lem 32682 stoweidlem59 40797 |
Copyright terms: Public domain | W3C validator |