![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnssresd | Structured version Visualization version GIF version |
Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
fnssresd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fnssresd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
fnssresd | ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssresd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fnssresd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | fnssres 6161 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐵) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3711 ↾ cres 5264 Fn wfn 6040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-br 4801 df-opab 4861 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-res 5274 df-fun 6047 df-fn 6048 |
This theorem is referenced by: xlimconst2 40560 |
Copyright terms: Public domain | W3C validator |