![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fnssres | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssresb 6041 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐵) Fn 𝐵 ↔ 𝐵 ⊆ 𝐴)) | |
2 | 1 | biimpar 501 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ⊆ wss 3607 ↾ cres 5145 Fn wfn 5921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-res 5155 df-fun 5928 df-fn 5929 |
This theorem is referenced by: fnresin1 6043 fnresin2 6044 fssres 6108 fvreseq0 6357 fnreseql 6367 ffvresb 6434 fnressn 6465 soisores 6617 oprres 6844 ofres 6955 fnsuppres 7367 tfrlem1 7517 tz7.48lem 7581 tz7.49c 7586 resixp 7985 ixpfi2 8305 dfac12lem1 9003 ackbij2lem3 9101 cfsmolem 9130 alephsing 9136 ttukeylem3 9371 iunfo 9399 fpwwe2lem8 9497 mulnzcnopr 10711 seqfeq2 12864 seqf1olem2 12881 swrd0len 13467 swrdccat1 13503 bpolylem 14823 reeff1 14894 eucalg 15347 sscres 16530 fullsubc 16557 fullresc 16558 funcres2c 16608 dmaf 16746 cdaf 16747 frmdplusg 17438 frmdss2 17447 gass 17780 dprdfadd 18465 mgpf 18605 prdscrngd 18659 subrgascl 19546 mdetrsca 20457 upxp 21474 uptx 21476 cnmpt1st 21519 cnmpt2nd 21520 cnextfres1 21919 prdstmdd 21974 ressprdsds 22223 prdsxmslem2 22381 xrsdsre 22660 itg1addlem4 23511 recosf1o 24326 resinf1o 24327 dvdsmulf1o 24965 wlkres 26623 sspg 27711 ssps 27713 sspmlem 27715 sspn 27719 hhssnv 28249 1stpreimas 29611 cnre2csqlem 30084 rmulccn 30102 raddcn 30103 carsggect 30508 subiwrdlen 30576 signsvtn0 30775 signstres 30780 bnj1253 31211 bnj1280 31214 subfacp1lem3 31290 subfacp1lem5 31292 cvmlift2lem9a 31411 filnetlem4 32501 finixpnum 33524 poimirlem4 33543 poimirlem8 33547 ftc1anclem3 33617 isdrngo2 33887 diaintclN 36664 dibintclN 36773 dihintcl 36950 imaiinfv 37573 fnwe2lem2 37938 aomclem6 37946 deg1mhm 38102 fnssresd 39796 limsupvaluz2 40288 supcnvlimsup 40290 limsupgtlem 40327 resincncf 40406 icccncfext 40418 dvnprodlem1 40479 fourierdlem42 40684 fourierdlem73 40714 pfxccat1 41735 rnghmresfn 42288 rnghmsscmap2 42298 rnghmsscmap 42299 rhmresfn 42334 rhmsscmap2 42344 rhmsscmap 42345 fdivmpt 42659 |
Copyright terms: Public domain | W3C validator |