![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsn | Structured version Visualization version GIF version |
Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
fnsn.1 | ⊢ 𝐴 ∈ V |
fnsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fnsn | ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | fnsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | fnsng 6091 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} Fn {𝐴}) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2131 Vcvv 3332 {csn 4313 〈cop 4319 Fn wfn 6036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-br 4797 df-opab 4857 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-fun 6043 df-fn 6044 |
This theorem is referenced by: f1osn 6329 fnsnb 6588 fvsnun2 6605 elixpsn 8105 axdc3lem4 9459 hashf1lem1 13423 axlowdimlem8 26020 axlowdimlem9 26021 axlowdimlem11 26023 axlowdimlem12 26024 bnj927 31138 cvmliftlem4 31569 cvmliftlem5 31570 finixpnum 33699 poimirlem3 33717 |
Copyright terms: Public domain | W3C validator |