![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version |
Description: Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6081 | . . 3 ⊢ Fun I | |
2 | funres 6090 | . . 3 ⊢ (Fun I → Fun ( I ↾ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun ( I ↾ 𝐴) |
4 | dmresi 5615 | . 2 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
5 | df-fn 6052 | . 2 ⊢ (( I ↾ 𝐴) Fn 𝐴 ↔ (Fun ( I ↾ 𝐴) ∧ dom ( I ↾ 𝐴) = 𝐴)) | |
6 | 3, 4, 5 | mpbir2an 993 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 I cid 5173 dom cdm 5266 ↾ cres 5268 Fun wfun 6043 Fn wfn 6044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-res 5278 df-fun 6051 df-fn 6052 |
This theorem is referenced by: idssxp 6170 f1oi 6336 fninfp 6605 fndifnfp 6607 fnnfpeq0 6609 fveqf1o 6721 weniso 6768 iordsmo 7624 fipreima 8439 dfac9 9170 pmtrfinv 18101 ustuqtop3 22268 fta1blem 24147 qaa 24297 dfiop2 28942 cvmliftlem4 31598 cvmliftlem5 31599 poimirlem15 33755 poimirlem22 33762 ltrnid 35942 rtrclex 38444 dvsid 39050 dflinc2 42727 |
Copyright terms: Public domain | W3C validator |