![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnresdmss | Structured version Visualization version GIF version |
Description: A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fnresdmss | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6027 | . . 3 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → Rel 𝐹) |
3 | fndm 6028 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → dom 𝐹 = 𝐴) |
5 | simpr 476 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
6 | 4, 5 | eqsstrd 3672 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → dom 𝐹 ⊆ 𝐵) |
7 | relssres 5472 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) | |
8 | 2, 6, 7 | syl2anc 694 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ⊆ wss 3607 dom cdm 5143 ↾ cres 5145 Rel wrel 5148 Fn wfn 5921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-dm 5153 df-res 5155 df-fun 5928 df-fn 5929 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |