![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version |
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
Ref | Expression |
---|---|
fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6027 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | fndm 6028 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | eqimss 3690 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
5 | relssres 5472 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
6 | 1, 4, 5 | syl2anc 694 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ⊆ wss 3607 dom cdm 5143 ↾ cres 5145 Rel wrel 5148 Fn wfn 5921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-dm 5153 df-res 5155 df-fun 5928 df-fn 5929 |
This theorem is referenced by: fnima 6048 fresin 6111 resasplit 6112 fresaunres2 6114 fvreseq1 6358 fnsnr 6472 fninfp 6481 fnsnsplit 6491 fsnunfv 6494 fsnunres 6495 fnsuppeq0 7368 mapunen 8170 fnfi 8279 canthp1lem2 9513 fseq1p1m1 12452 facnn 13102 fac0 13103 hashgval 13160 hashinf 13162 rlimres 14333 lo1res 14334 rlimresb 14340 isercolllem2 14440 isercoll 14442 ruclem4 15007 fsets 15938 sscres 16530 sscid 16531 gsumzres 18356 pwssplit1 19107 zzngim 19949 ptuncnv 21658 ptcmpfi 21664 tsmsres 21994 imasdsf1olem 22225 tmslem 22334 tmsxms 22338 imasf1oxms 22341 prdsxms 22382 tmsxps 22388 tmsxpsmopn 22389 isngp2 22448 tngngp2 22503 cnfldms 22626 cncms 23197 cnfldcusp 23199 mbfres2 23457 dvres 23720 dvres3a 23723 cpnres 23745 dvmptres3 23764 dvlip2 23803 dvgt0lem2 23811 dvne0 23819 rlimcnp2 24738 jensen 24760 eupthvdres 27213 sspg 27711 ssps 27713 sspn 27719 hhsssh 28254 fnresin 29558 padct 29625 ffsrn 29632 resf1o 29633 gsumle 29907 cnrrext 30182 indf1ofs 30216 eulerpartlemt 30561 subfacp1lem3 31290 subfacp1lem5 31292 cvmliftlem11 31403 poimirlem9 33548 mapfzcons1 37597 eq0rabdioph 37657 eldioph4b 37692 diophren 37694 pwssplit4 37976 dvresntr 40450 sge0split 40944 |
Copyright terms: Public domain | W3C validator |