MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Visualization version   GIF version

Theorem fnrel 5977
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5976 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 5893 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹 Fn 𝐴 → Rel 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  Rel wrel 5109  Fun wfun 5870   Fn wfn 5871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-fun 5878  df-fn 5879
This theorem is referenced by:  fnbr  5981  fnresdm  5988  fn0  5998  frel  6037  fcoi2  6066  f1rel  6091  f1ocnv  6136  dffn5  6228  feqmptdf  6238  fnsnfv  6245  fconst5  6456  fnex  6466  fnexALT  7117  tz7.48-2  7522  resfnfinfin  8231  zorn2lem4  9306  imasvscafn  16178  2oppchomf  16365  fnunres1  29389  idssxp  29402  bnj66  30904  rtrclex  37743  fnresdmss  39164  dfafn5a  41003
  Copyright terms: Public domain W3C validator