Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrel Structured version   Visualization version   GIF version

Theorem fnrel 6129
 Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel (𝐹 Fn 𝐴 → Rel 𝐹)

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 6128 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 funrel 6048 . 2 (Fun 𝐹 → Rel 𝐹)
31, 2syl 17 1 (𝐹 Fn 𝐴 → Rel 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  Rel wrel 5254  Fun wfun 6025   Fn wfn 6026 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 383  df-fun 6033  df-fn 6034 This theorem is referenced by:  fnbr  6133  fnresdm  6140  idssxp  6149  fn0  6151  frel  6190  fcoi2  6219  f1rel  6244  f1ocnv  6290  dffn5  6383  feqmptdf  6393  fnsnfv  6400  fconst5  6615  fnex  6625  fnexALT  7279  tz7.48-2  7690  resfnfinfin  8402  zorn2lem4  9523  imasvscafn  16405  2oppchomf  16591  fnunres1  29755  bnj66  31268  rtrclex  38450  fnresdmss  39868  dfafn5a  41760
 Copyright terms: Public domain W3C validator