![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnpm | Structured version Visualization version GIF version |
Description: Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
fnpm | ⊢ ↑pm Fn (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pm 8012 | . 2 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
2 | vex 3354 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | vex 3354 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | xpex 7109 | . . . 4 ⊢ (𝑦 × 𝑥) ∈ V |
5 | 4 | pwex 4981 | . . 3 ⊢ 𝒫 (𝑦 × 𝑥) ∈ V |
6 | 5 | rabex 4946 | . 2 ⊢ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} ∈ V |
7 | 1, 6 | fnmpt2i 7389 | 1 ⊢ ↑pm Fn (V × V) |
Colors of variables: wff setvar class |
Syntax hints: {crab 3065 Vcvv 3351 𝒫 cpw 4297 × cxp 5247 Fun wfun 6025 Fn wfn 6026 ↑pm cpm 8010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-pm 8012 |
This theorem is referenced by: elpmi 8028 pmresg 8037 pmsspw 8044 |
Copyright terms: Public domain | W3C validator |