![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnovrn | Structured version Visualization version GIF version |
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
fnovrn | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5182 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) | |
2 | df-ov 6693 | . . . 4 ⊢ (𝐶𝐹𝐷) = (𝐹‘〈𝐶, 𝐷〉) | |
3 | fnfvelrn 6396 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → (𝐹‘〈𝐶, 𝐷〉) ∈ ran 𝐹) | |
4 | 2, 3 | syl5eqel 2734 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
5 | 1, 4 | sylan2 490 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
6 | 5 | 3impb 1279 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 ∈ wcel 2030 〈cop 4216 × cxp 5141 ran crn 5144 Fn wfn 5921 ‘cfv 5926 (class class class)co 6690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 df-ov 6693 |
This theorem is referenced by: unirnioo 12311 ioorebas 12313 yonffthlem 16969 gsumval2a 17326 efginvrel2 18186 efgredleme 18202 efgcpbllemb 18214 mplsubrglem 19487 lecldbas 21071 blelrnps 22268 blelrn 22269 blssioo 22645 tgioo 22646 opnmbllem 23415 mbfdm 23440 mbfima 23444 tpr2rico 30086 dya2icoseg 30467 opnmbllem0 33575 elrnmpt2id 39741 smflimlem3 41302 |
Copyright terms: Public domain | W3C validator |