MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnovrn Structured version   Visualization version   GIF version

Theorem fnovrn 6851
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
fnovrn ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹)

Proof of Theorem fnovrn
StepHypRef Expression
1 opelxpi 5182 . . 3 ((𝐶𝐴𝐷𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵))
2 df-ov 6693 . . . 4 (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩)
3 fnfvelrn 6396 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
42, 3syl5eqel 2734 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹)
51, 4sylan2 490 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹)
653impb 1279 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054  wcel 2030  cop 4216   × cxp 5141  ran crn 5144   Fn wfn 5921  cfv 5926  (class class class)co 6690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-ov 6693
This theorem is referenced by:  unirnioo  12311  ioorebas  12313  yonffthlem  16969  gsumval2a  17326  efginvrel2  18186  efgredleme  18202  efgcpbllemb  18214  mplsubrglem  19487  lecldbas  21071  blelrnps  22268  blelrn  22269  blssioo  22645  tgioo  22646  opnmbllem  23415  mbfdm  23440  mbfima  23444  tpr2rico  30086  dya2icoseg  30467  opnmbllem0  33575  elrnmpt2id  39741  smflimlem3  41302
  Copyright terms: Public domain W3C validator