![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnov | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6405 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧))) | |
2 | fveq2 6354 | . . . . 5 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) | |
3 | df-ov 6818 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
4 | 2, 3 | syl6eqr 2813 | . . . 4 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
5 | 4 | mpt2mpt 6919 | . . 3 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦)) |
6 | 5 | eqeq2i 2773 | . 2 ⊢ (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹‘𝑧)) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
7 | 1, 6 | bitri 264 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 〈cop 4328 ↦ cmpt 4882 × cxp 5265 Fn wfn 6045 ‘cfv 6050 (class class class)co 6815 ↦ cmpt2 6817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-iota 6013 df-fun 6052 df-fn 6053 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 |
This theorem is referenced by: mapxpen 8294 dfioo2 12488 fnhomeqhomf 16573 reschomf 16713 cofulid 16772 cofurid 16773 prf1st 17066 prf2nd 17067 1st2ndprf 17068 curfuncf 17100 curf2ndf 17109 plusfeq 17471 scafeq 19106 psrvscafval 19613 cnfldsub 19997 ipfeq 20218 mdetunilem7 20647 madurid 20673 cnmpt22f 21701 cnmptcom 21704 xkocnv 21840 qustgplem 22146 stdbdxmet 22542 iimulcn 22959 rrxds 23402 rrxmfval 23410 cnnvm 27868 ofpreima 29796 ressplusf 29981 matmpt2 30200 mndpluscn 30303 rmulccn 30305 raddcn 30306 txsconnlem 31551 cvmlift2lem6 31619 cvmlift2lem7 31620 cvmlift2lem12 31625 unccur 33724 matunitlindflem1 33737 rngchomrnghmresALTV 42525 |
Copyright terms: Public domain | W3C validator |