Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnov Structured version   Visualization version   GIF version

Theorem fnov 6935
 Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnov (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem fnov
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffn5 6405 . 2 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)))
2 fveq2 6354 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 6818 . . . . 5 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3syl6eqr 2813 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝑥𝐹𝑦))
54mpt2mpt 6919 . . 3 (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦))
65eqeq2i 2773 . 2 (𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (𝐹𝑧)) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
71, 6bitri 264 1 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1632  ⟨cop 4328   ↦ cmpt 4882   × cxp 5265   Fn wfn 6045  ‘cfv 6050  (class class class)co 6815   ↦ cmpt2 6817 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-iota 6013  df-fun 6052  df-fn 6053  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820 This theorem is referenced by:  mapxpen  8294  dfioo2  12488  fnhomeqhomf  16573  reschomf  16713  cofulid  16772  cofurid  16773  prf1st  17066  prf2nd  17067  1st2ndprf  17068  curfuncf  17100  curf2ndf  17109  plusfeq  17471  scafeq  19106  psrvscafval  19613  cnfldsub  19997  ipfeq  20218  mdetunilem7  20647  madurid  20673  cnmpt22f  21701  cnmptcom  21704  xkocnv  21840  qustgplem  22146  stdbdxmet  22542  iimulcn  22959  rrxds  23402  rrxmfval  23410  cnnvm  27868  ofpreima  29796  ressplusf  29981  matmpt2  30200  mndpluscn  30303  rmulccn  30305  raddcn  30306  txsconnlem  31551  cvmlift2lem6  31619  cvmlift2lem7  31620  cvmlift2lem12  31625  unccur  33724  matunitlindflem1  33737  rngchomrnghmresALTV  42525
 Copyright terms: Public domain W3C validator