![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmpti | Structured version Visualization version GIF version |
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnmpti.1 | ⊢ 𝐵 ∈ V |
fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fnmpti | ⊢ 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | rgenw 2953 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
3 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | mptfng 6057 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
5 | 2, 4 | mpbi 220 | 1 ⊢ 𝐹 Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ↦ cmpt 4762 Fn wfn 5921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-fun 5928 df-fn 5929 |
This theorem is referenced by: dmmpti 6061 fconst 6129 dffn5 6280 eufnfv 6531 idref 6539 offn 6950 caofinvl 6966 fo1st 7230 fo2nd 7231 reldm 7263 mapsnf1o2 7947 unfilem2 8266 fidomdm 8284 pwfilem 8301 noinfep 8595 aceq3lem 8981 dfac4 8983 ackbij2lem2 9100 cfslb2n 9128 axcc2lem 9296 dmct 9384 konigthlem 9428 rankcf 9637 tskuni 9643 seqf1o 12882 ccatlen 13393 ccatvalfn 13399 swrdlen 13468 swrdswrd 13506 sqrtf 14147 mptfzshft 14554 fsumrev 14555 fprodrev 14751 efcvgfsum 14860 prmreclem2 15668 1arith 15678 vdwlem6 15737 vdwlem8 15739 slotfn 15922 topnfn 16133 fnmre 16298 cidffn 16386 cidfn 16387 funcres 16603 yonedainv 16968 fn0g 17309 grpinvfn 17509 conjnmz 17741 psgnfn 17967 odf 18002 sylow1lem4 18062 pgpssslw 18075 sylow2blem3 18083 sylow3lem2 18089 cygctb 18339 dprd2da 18487 fnmgp 18537 rlmfn 19238 rrgsupp 19339 asclfn 19384 evlslem1 19563 frlmup4 20188 mdetrlin 20456 fncld 20874 hauseqlcld 21497 kqf 21598 filunirn 21733 fmf 21796 txflf 21857 clsnsg 21960 tgpconncomp 21963 qustgpopn 21970 qustgplem 21971 ustfn 22052 xmetunirn 22189 met1stc 22373 rrxmvallem 23233 ovolf 23296 vitali 23427 i1fmulc 23515 mbfi1fseqlem4 23530 itg2seq 23554 itg2monolem1 23562 i1fibl 23619 fncpn 23741 lhop1lem 23821 mdegxrf 23873 aannenlem3 24130 efabl 24341 logccv 24454 gausslemma2dlem1 25136 padicabvf 25365 mptelee 25820 wlkiswwlks2lem1 26823 clwlkclwwlklem2a2 26959 grpoinvf 27514 occllem 28290 pjfni 28688 pjmfn 28702 rnbra 29094 bra11 29095 kbass2 29104 hmopidmchi 29138 xppreima2 29578 abfmpunirn 29580 psgnfzto1stlem 29978 fimaproj 30028 locfinreflem 30035 ofcfn 30290 sxbrsigalem3 30462 eulerpartgbij 30562 sseqfv1 30579 sseqfn 30580 sseqf 30582 sseqfv2 30584 signstlen 30772 msubrn 31552 msrf 31565 faclimlem1 31755 bj-evalfn 33151 matunitlindflem1 33535 poimirlem30 33569 mblfinlem2 33577 volsupnfl 33584 cnambfre 33588 itg2addnclem2 33592 itg2addnclem3 33593 ftc1anclem5 33619 ftc1anclem7 33621 sdclem2 33668 prdsbnd2 33724 rrncmslem 33761 diafn 36640 cdlemm10N 36724 dibfna 36760 lcfrlem9 37156 mapd1o 37254 hdmapfnN 37438 hgmapfnN 37497 rmxypairf1o 37793 hbtlem6 38016 dgraaf 38034 cytpfn 38103 ntrf 38738 uzmptshftfval 38862 binomcxplemrat 38866 addrfn 38993 subrfn 38994 mulvfn 38995 limsup10exlem 40322 liminfvalxr 40333 fourierdlem62 40703 fourierdlem70 40711 fourierdlem71 40712 fmtnorn 41771 zrinitorngc 42325 zrtermorngc 42326 zrtermoringc 42395 |
Copyright terms: Public domain | W3C validator |