![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmpt | Structured version Visualization version GIF version |
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
Ref | Expression |
---|---|
mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3352 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | 1 | ralimi 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | mptfng 6180 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
5 | 2, 4 | sylib 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 ↦ cmpt 4881 Fn wfn 6044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-fun 6051 df-fn 6052 |
This theorem is referenced by: mpt0 6182 fnmptfvd 6483 ralrnmpt 6531 fmpt 6544 fmpt2d 6556 f1ocnvd 7049 offval2 7079 ofrfval2 7080 mptelixpg 8111 fifo 8503 cantnflem1 8759 infmap2 9232 compssiso 9388 gruiun 9813 mptnn0fsupp 12991 mptnn0fsuppr 12993 seqof 13052 rlimi2 14444 prdsbas3 16343 prdsbascl 16345 prdsdsval2 16346 quslem 16405 fnmrc 16469 isofn 16636 pmtrrn 18077 pmtrfrn 18078 pmtrdifwrdellem2 18102 gsummptcl 18566 mptscmfsupp0 19130 ofco2 20459 pmatcollpw2lem 20784 neif 21106 tgrest 21165 cmpfi 21413 elptr2 21579 xkoptsub 21659 ptcmplem2 22058 ptcmplem3 22059 prdsxmetlem 22374 prdsxmslem2 22535 bcth3 23328 uniioombllem6 23556 itg2const 23706 ellimc2 23840 dvrec 23917 dvmptres3 23918 ulmss 24350 ulmdvlem1 24353 ulmdvlem2 24354 ulmdvlem3 24355 itgulm2 24362 psercn 24379 f1o3d 29740 f1od2 29808 psgnfzto1stlem 30159 rmulccn 30283 esumnul 30419 esum0 30420 gsumesum 30430 ofcfval2 30475 signsplypnf 30936 signsply0 30937 hgt750lemb 31043 matunitlindflem1 33718 matunitlindflem2 33719 cdlemk56 36761 dicfnN 36974 hbtlem7 38197 refsumcn 39688 wessf1ornlem 39870 choicefi 39891 axccdom 39915 fnmptd 39933 fsumsermpt 40314 liminfval2 40503 stoweidlem31 40751 stoweidlem59 40779 stirlinglem13 40806 dirkercncflem2 40824 fourierdlem62 40888 subsaliuncllem 41078 subsaliuncl 41079 hoidmvlelem3 41317 dfafn5b 41747 lincresunit2 42777 |
Copyright terms: Public domain | W3C validator |