![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimfv | Structured version Visualization version GIF version |
Description: The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fnlimfv.1 | ⊢ Ⅎ𝑥𝐷 |
fnlimfv.2 | ⊢ Ⅎ𝑥𝐹 |
fnlimfv.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
fnlimfv.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
fnlimfv | ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnlimfv.3 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
2 | fnlimfv.1 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
3 | nfcv 2793 | . . . . 5 ⊢ Ⅎ𝑦𝐷 | |
4 | nfcv 2793 | . . . . 5 ⊢ Ⅎ𝑦( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
5 | nfcv 2793 | . . . . . 6 ⊢ Ⅎ𝑥 ⇝ | |
6 | nfcv 2793 | . . . . . . 7 ⊢ Ⅎ𝑥𝑍 | |
7 | fnlimfv.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
8 | nfcv 2793 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑚 | |
9 | 7, 8 | nffv 6236 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
10 | nfcv 2793 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
11 | 9, 10 | nffv 6236 | . . . . . . 7 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑦) |
12 | 6, 11 | nfmpt 4779 | . . . . . 6 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) |
13 | 5, 12 | nffv 6236 | . . . . 5 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
14 | fveq2 6229 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) | |
15 | 14 | mpteq2dv 4778 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
16 | 15 | fveq2d 6233 | . . . . 5 ⊢ (𝑥 = 𝑦 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
17 | 2, 3, 4, 13, 16 | cbvmptf 4781 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
18 | 1, 17 | eqtri 2673 | . . 3 ⊢ 𝐺 = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)))) |
19 | 18 | a1i 11 | . 2 ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))))) |
20 | fveq2 6229 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) | |
21 | 20 | mpteq2dv 4778 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
22 | 21 | fveq2d 6233 | . . 3 ⊢ (𝑦 = 𝑋 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
23 | 22 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝑋) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
24 | fnlimfv.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
25 | fvexd 6241 | . 2 ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
26 | 19, 23, 24, 25 | fvmptd 6327 | 1 ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Ⅎwnfc 2780 Vcvv 3231 ↦ cmpt 4762 ‘cfv 5926 ⇝ cli 14259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 |
This theorem is referenced by: fnlimcnv 40217 smflimlem2 41301 |
Copyright terms: Public domain | W3C validator |