![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnlimf | Structured version Visualization version GIF version |
Description: The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fnlimf.p | ⊢ Ⅎ𝑚𝜑 |
fnlimf.m | ⊢ Ⅎ𝑚𝐹 |
fnlimf.n | ⊢ Ⅎ𝑥𝐹 |
fnlimf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
fnlimf.f | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
fnlimf.d | ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
fnlimf.g | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
Ref | Expression |
---|---|
fnlimf | ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnlimf.p | . . . 4 ⊢ Ⅎ𝑚𝜑 | |
2 | nfv 1980 | . . . 4 ⊢ Ⅎ𝑚 𝑧 ∈ 𝐷 | |
3 | 1, 2 | nfan 1965 | . . 3 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑧 ∈ 𝐷) |
4 | fnlimf.m | . . 3 ⊢ Ⅎ𝑚𝐹 | |
5 | fnlimf.n | . . 3 ⊢ Ⅎ𝑥𝐹 | |
6 | fnlimf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
7 | fnlimf.f | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
8 | 7 | adantlr 753 | . . 3 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
9 | fnlimf.d | . . 3 ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
10 | simpr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ 𝐷) | |
11 | 3, 4, 5, 6, 8, 9, 10 | fnlimfvre 40378 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) ∈ ℝ) |
12 | fnlimf.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
13 | nfrab1 3249 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
14 | 9, 13 | nfcxfr 2888 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
15 | nfcv 2890 | . . . 4 ⊢ Ⅎ𝑧𝐷 | |
16 | nfcv 2890 | . . . 4 ⊢ Ⅎ𝑧( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) | |
17 | nfcv 2890 | . . . . 5 ⊢ Ⅎ𝑥 ⇝ | |
18 | nfcv 2890 | . . . . . 6 ⊢ Ⅎ𝑥𝑍 | |
19 | nfcv 2890 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑚 | |
20 | 5, 19 | nffv 6347 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑚) |
21 | nfcv 2890 | . . . . . . 7 ⊢ Ⅎ𝑥𝑧 | |
22 | 20, 21 | nffv 6347 | . . . . . 6 ⊢ Ⅎ𝑥((𝐹‘𝑚)‘𝑧) |
23 | 18, 22 | nfmpt 4886 | . . . . 5 ⊢ Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)) |
24 | 17, 23 | nffv 6347 | . . . 4 ⊢ Ⅎ𝑥( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
25 | fveq2 6340 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑧)) | |
26 | 25 | mpteq2dv 4885 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧))) |
27 | 26 | fveq2d 6344 | . . . 4 ⊢ (𝑥 = 𝑧 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
28 | 14, 15, 16, 24, 27 | cbvmptf 4888 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
29 | 12, 28 | eqtri 2770 | . 2 ⊢ 𝐺 = (𝑧 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑧)))) |
30 | 11, 29 | fmptd 6536 | 1 ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 Ⅎwnf 1845 ∈ wcel 2127 Ⅎwnfc 2877 {crab 3042 ∪ ciun 4660 ∩ ciin 4661 ↦ cmpt 4869 dom cdm 5254 ⟶wf 6033 ‘cfv 6037 ℝcr 10098 ℤ≥cuz 11850 ⇝ cli 14385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-iin 4663 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-pm 8014 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8501 df-inf 8502 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-fl 12758 df-seq 12967 df-exp 13026 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-clim 14389 df-rlim 14390 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |