MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfco Structured version   Visualization version   GIF version

Theorem fnfco 6107
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnfco ((𝐹 Fn 𝐴𝐺:𝐵𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnfco
StepHypRef Expression
1 df-f 5930 . 2 (𝐺:𝐵𝐴 ↔ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐴))
2 fnco 6037 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
323expb 1285 . 2 ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵 ∧ ran 𝐺𝐴)) → (𝐹𝐺) Fn 𝐵)
41, 3sylan2b 491 1 ((𝐹 Fn 𝐴𝐺:𝐵𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wss 3607  ran crn 5144  ccom 5147   Fn wfn 5921  wf 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-fun 5928  df-fn 5929  df-f 5930
This theorem is referenced by:  cocan1  6586  cocan2  6587  ofco  6959  1stcof  7240  2ndcof  7241  axcc3  9298  dmaf  16746  cdaf  16747  gsumzaddlem  18367  prdstopn  21479  xpstopnlem2  21662  prdstgpd  21975  prdsxmslem2  22381  uniiccdif  23392  uniiccvol  23394  uniioombllem2  23397  resinf1o  24327  jensen  24760  occllem  28290  nlelchi  29048  hmopidmchi  29138  iprodefisumlem  31752  brcoffn  38645  brcofffn  38646  stoweidlem27  40562
  Copyright terms: Public domain W3C validator