Mathbox for Jeff Hankins < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnetr Structured version   Visualization version   GIF version

Theorem fnetr 32652
 Description: Transitivity of the fineness relation. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
fnetr ((𝐴Fne𝐵𝐵Fne𝐶) → 𝐴Fne𝐶)

Proof of Theorem fnetr
StepHypRef Expression
1 eqid 2760 . . . 4 𝐴 = 𝐴
2 eqid 2760 . . . 4 𝐵 = 𝐵
31, 2fnebas 32645 . . 3 (𝐴Fne𝐵 𝐴 = 𝐵)
4 eqid 2760 . . . 4 𝐶 = 𝐶
52, 4fnebas 32645 . . 3 (𝐵Fne𝐶 𝐵 = 𝐶)
63, 5sylan9eq 2814 . 2 ((𝐴Fne𝐵𝐵Fne𝐶) → 𝐴 = 𝐶)
7 fnerel 32639 . . . . 5 Rel Fne
87brrelex2i 5316 . . . 4 (𝐴Fne𝐵𝐵 ∈ V)
91, 2isfne4b 32642 . . . . 5 (𝐵 ∈ V → (𝐴Fne𝐵 ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
109simplbda 655 . . . 4 ((𝐵 ∈ V ∧ 𝐴Fne𝐵) → (topGen‘𝐴) ⊆ (topGen‘𝐵))
118, 10mpancom 706 . . 3 (𝐴Fne𝐵 → (topGen‘𝐴) ⊆ (topGen‘𝐵))
127brrelex2i 5316 . . . 4 (𝐵Fne𝐶𝐶 ∈ V)
132, 4isfne4b 32642 . . . . 5 (𝐶 ∈ V → (𝐵Fne𝐶 ↔ ( 𝐵 = 𝐶 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐶))))
1413simplbda 655 . . . 4 ((𝐶 ∈ V ∧ 𝐵Fne𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
1512, 14mpancom 706 . . 3 (𝐵Fne𝐶 → (topGen‘𝐵) ⊆ (topGen‘𝐶))
1611, 15sylan9ss 3757 . 2 ((𝐴Fne𝐵𝐵Fne𝐶) → (topGen‘𝐴) ⊆ (topGen‘𝐶))
1712adantl 473 . . 3 ((𝐴Fne𝐵𝐵Fne𝐶) → 𝐶 ∈ V)
181, 4isfne4b 32642 . . 3 (𝐶 ∈ V → (𝐴Fne𝐶 ↔ ( 𝐴 = 𝐶 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐶))))
1917, 18syl 17 . 2 ((𝐴Fne𝐵𝐵Fne𝐶) → (𝐴Fne𝐶 ↔ ( 𝐴 = 𝐶 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐶))))
206, 16, 19mpbir2and 995 1 ((𝐴Fne𝐵𝐵Fne𝐶) → 𝐴Fne𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  Vcvv 3340   ⊆ wss 3715  ∪ cuni 4588   class class class wbr 4804  ‘cfv 6049  topGenctg 16300  Fnecfne 32637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-topgen 16306  df-fne 32638 This theorem is referenced by:  fnessref  32658  fnemeet2  32668  fnejoin2  32670
 Copyright terms: Public domain W3C validator