![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnessex | Structured version Visualization version GIF version |
Description: If 𝐵 is finer than 𝐴 and 𝑆 is an element of 𝐴, every point in 𝑆 is an element of a subset of 𝑆 which is in 𝐵. (Contributed by Jeff Hankins, 28-Sep-2009.) |
Ref | Expression |
---|---|
fnessex | ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝑆) → ∃𝑥 ∈ 𝐵 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnetg 32638 | . . 3 ⊢ (𝐴Fne𝐵 → 𝐴 ⊆ (topGen‘𝐵)) | |
2 | 1 | sselda 3736 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → 𝑆 ∈ (topGen‘𝐵)) |
3 | tg2 20963 | . 2 ⊢ ((𝑆 ∈ (topGen‘𝐵) ∧ 𝑃 ∈ 𝑆) → ∃𝑥 ∈ 𝐵 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑆)) | |
4 | 2, 3 | stoic3 1842 | 1 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝑆) → ∃𝑥 ∈ 𝐵 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2131 ∃wrex 3043 ⊆ wss 3707 class class class wbr 4796 ‘cfv 6041 topGenctg 16292 Fnecfne 32629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-iota 6004 df-fun 6043 df-fv 6049 df-topgen 16298 df-fne 32630 |
This theorem is referenced by: fneint 32641 fnessref 32650 |
Copyright terms: Public domain | W3C validator |