Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnerel Structured version   Visualization version   GIF version

Theorem fnerel 32458
Description: Fineness is a relation. (Contributed by Jeff Hankins, 28-Sep-2009.)
Assertion
Ref Expression
fnerel Rel Fne

Proof of Theorem fnerel
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fne 32457 . 2 Fne = {⟨𝑥, 𝑦⟩ ∣ ( 𝑥 = 𝑦 ∧ ∀𝑧𝑥 𝑧 (𝑦 ∩ 𝒫 𝑧))}
21relopabi 5278 1 Rel Fne
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  wral 2941  cin 3606  wss 3607  𝒫 cpw 4191   cuni 4468  Rel wrel 5148  Fnecfne 32456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-opab 4746  df-xp 5149  df-rel 5150  df-fne 32457
This theorem is referenced by:  isfne  32459  isfne4  32460  fnetr  32471  fneval  32472  fneer  32473  fnessref  32477
  Copyright terms: Public domain W3C validator