![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version |
Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
fneq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | fneq2 6018 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 Fn wfn 5921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-cleq 2644 df-fn 5929 |
This theorem is referenced by: fnunsn 6036 fnprb 6513 fntpb 6514 fnsuppeq0 7368 tpos0 7427 wfrlem5 7464 dfixp 7952 ordtypelem4 8467 ser0f 12894 0csh0 13585 s3fn 13702 prodf1f 14668 efcvgfsum 14860 prmrec 15673 xpscfn 16266 0ssc 16544 0subcat 16545 mulgfvi 17592 ovolunlem1 23311 volsup 23370 mtest 24203 mtestbdd 24204 pserulm 24221 pserdvlem2 24227 emcllem5 24771 lgamgulm2 24807 lgamcvglem 24811 gamcvg2lem 24830 tglnfn 25487 crctcshlem4 26768 resf1o 29633 esumfsup 30260 esumpcvgval 30268 esumcvg 30276 esumsup 30279 bnj149 31071 bnj1312 31252 faclimlem1 31755 frrlem5 31909 fullfunfnv 32178 knoppcnlem8 32615 knoppcnlem11 32618 mblfinlem2 33577 ovoliunnfl 33581 voliunnfl 33583 subsaliuncl 40894 |
Copyright terms: Public domain | W3C validator |