![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | fneq2 6018 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 Fn wfn 5921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-cleq 2644 df-fn 5929 |
This theorem is referenced by: fneq12d 6021 fnprb 6513 fntpb 6514 fnpr2g 6515 undifixp 7986 brwdom2 8519 dfac3 8982 ac7g 9334 ccatlid 13404 ccatrid 13405 ccatass 13406 ccatswrd 13502 swrdccat2 13504 swrdswrd 13506 swrdccatin2 13533 swrdccatin12 13537 revccat 13561 revrev 13562 repsdf2 13571 0csh0 13585 cshco 13628 wrd2pr2op 13733 wrd3tpop 13737 ofccat 13754 seqshft 13869 invf 16475 sscfn1 16524 sscfn2 16525 isssc 16527 fuchom 16668 estrchomfeqhom 16823 mulgfval 17589 symgplusg 17855 subrgascl 19546 frlmsslss2 20162 m1detdiag 20451 ptval 21421 xpsdsfn2 22230 fresf1o 29561 psgndmfi 29974 pl1cn 30129 signsvtn0 30775 signstres 30780 bnj927 30965 poimirlem1 33540 poimirlem2 33541 poimirlem3 33542 poimirlem4 33543 poimirlem6 33545 poimirlem7 33546 poimirlem11 33550 poimirlem12 33551 poimirlem16 33555 poimirlem17 33556 poimirlem19 33558 poimirlem20 33559 dibfnN 36762 dihintcl 36950 uzmptshftfval 38862 ccatpfx 41734 pfxccatin12 41750 srhmsubc 42401 srhmsubcALTV 42419 |
Copyright terms: Public domain | W3C validator |