Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneq12d Structured version   Visualization version   GIF version

Theorem fneq12d 6123
 Description: Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
Hypotheses
Ref Expression
fneq12d.1 (𝜑𝐹 = 𝐺)
fneq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
fneq12d (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))

Proof of Theorem fneq12d
StepHypRef Expression
1 fneq12d.1 . . 3 (𝜑𝐹 = 𝐺)
21fneq1d 6121 . 2 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐴))
3 fneq12d.2 . . 3 (𝜑𝐴 = 𝐵)
43fneq2d 6122 . 2 (𝜑 → (𝐺 Fn 𝐴𝐺 Fn 𝐵))
52, 4bitrd 268 1 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1631   Fn wfn 6026 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-fun 6033  df-fn 6034 This theorem is referenced by:  fneq12  6124  seqfn  13020  sscres  16690  reschomf  16698  funcres  16763  psrvscafval  19605  ressprdsds  22396  rrxmfval  23408  sseqfn  30792  funcoressn  41727
 Copyright terms: Public domain W3C validator