![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnelfp | Structured version Visualization version GIF version |
Description: Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fnelfp | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑋) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fninfp 6605 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) | |
2 | 1 | eleq2d 2825 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ 𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥})) |
3 | fveq2 6353 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
4 | id 22 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
5 | 3, 4 | eqeq12d 2775 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑋) = 𝑋)) |
6 | 5 | elrab3 3505 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥} ↔ (𝐹‘𝑋) = 𝑋)) |
7 | 2, 6 | sylan9bb 738 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘𝑋) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {crab 3054 ∩ cin 3714 I cid 5173 dom cdm 5266 Fn wfn 6044 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-res 5278 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: ismrcd1 37781 ismrcd2 37782 istopclsd 37783 |
Copyright terms: Public domain | W3C validator |