![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmu | Structured version Visualization version GIF version |
Description: A function has a unique domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
fndmu | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 Fn 𝐵) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 6103 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | fndm 6103 | . 2 ⊢ (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵) | |
3 | 1, 2 | sylan9req 2779 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 Fn 𝐵) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 dom cdm 5218 Fn wfn 5996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1818 df-cleq 2717 df-fn 6004 |
This theorem is referenced by: fodmrnu 6236 0fz1 12475 lmodfopnelem1 19022 grporn 27605 hon0 28882 2ffzoeq 41765 |
Copyright terms: Public domain | W3C validator |