![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmfifsupp | Structured version Visualization version GIF version |
Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
Ref | Expression |
---|---|
fndmfisuppfi.f | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
fndmfisuppfi.d | ⊢ (𝜑 → 𝐷 ∈ Fin) |
fndmfisuppfi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fndmfifsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmfisuppfi.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | dffn3 6193 | . . 3 ⊢ (𝐹 Fn 𝐷 ↔ 𝐹:𝐷⟶ran 𝐹) | |
3 | 1, 2 | sylib 208 | . 2 ⊢ (𝜑 → 𝐹:𝐷⟶ran 𝐹) |
4 | fndmfisuppfi.d | . 2 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
5 | fndmfisuppfi.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
6 | 3, 4, 5 | fdmfifsupp 8439 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2143 class class class wbr 4783 ran crn 5249 Fn wfn 6025 ⟶wf 6026 Fincfn 8107 finSupp cfsupp 8429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-ral 3064 df-rex 3065 df-reu 3066 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-supp 7445 df-er 7894 df-en 8108 df-fin 8111 df-fsupp 8430 |
This theorem is referenced by: resfifsupp 8457 gsummptcl 18579 esumgsum 30448 gsumesum 30462 matunitlindflem1 33738 matunitlindflem2 33739 |
Copyright terms: Public domain | W3C validator |