![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnconstg | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.) |
Ref | Expression |
---|---|
fnconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6232 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | ffn 6185 | . 2 ⊢ ((𝐴 × {𝐵}):𝐴⟶{𝐵} → (𝐴 × {𝐵}) Fn 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 {csn 4316 × cxp 5247 Fn wfn 6026 ⟶wf 6027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-fun 6033 df-fn 6034 df-f 6035 |
This theorem is referenced by: fconst2g 6612 ofc1 7067 ofc2 7068 caofid0l 7072 caofid0r 7073 caofid1 7074 caofid2 7075 fnsuppres 7474 fczsupp0 7476 fczfsuppd 8449 brwdom2 8634 cantnf0 8736 ofnegsub 11220 ofsubge0 11221 pwsplusgval 16358 pwsmulrval 16359 pwsvscafval 16362 xpsc0 16428 xpsc1 16429 pwsco1mhm 17578 dprdsubg 18631 pwsmgp 18826 pwssplit1 19272 frlmpwsfi 20313 frlmbas 20316 frlmvscaval 20327 islindf4 20394 tmdgsum2 22120 0plef 23659 0pledm 23660 itg1ge0 23673 mbfi1fseqlem5 23706 xrge0f 23718 itg2ge0 23722 itg2addlem 23745 bddibl 23826 dvidlem 23899 rolle 23973 dveq0 23983 dv11cn 23984 tdeglem4 24040 mdeg0 24050 fta1blem 24148 qaa 24298 basellem9 25036 ofcc 30508 ofcof 30509 eulerpartlemt 30773 noextendseq 32157 matunitlindflem1 33738 matunitlindflem2 33739 ptrecube 33742 poimirlem1 33743 poimirlem2 33744 poimirlem3 33745 poimirlem4 33746 poimirlem5 33747 poimirlem6 33748 poimirlem7 33749 poimirlem10 33752 poimirlem11 33753 poimirlem12 33754 poimirlem16 33758 poimirlem17 33759 poimirlem19 33761 poimirlem20 33762 poimirlem22 33764 poimirlem23 33765 poimirlem28 33770 poimirlem29 33771 poimirlem31 33773 poimirlem32 33774 broucube 33776 cnpwstotbnd 33928 eqlkr2 34909 pwssplit4 38185 mpaaeu 38246 rngunsnply 38269 ofdivrec 39051 dvconstbi 39059 zlmodzxzscm 42663 aacllem 43078 |
Copyright terms: Public domain | W3C validator |