MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnco Structured version   Visualization version   GIF version

Theorem fnco 6139
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnco ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 6128 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
2 fnfun 6128 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
3 funco 6071 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2an 583 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → Fun (𝐹𝐺))
543adant3 1126 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → Fun (𝐹𝐺))
6 fndm 6130 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76sseq2d 3782 . . . . . 6 (𝐹 Fn 𝐴 → (ran 𝐺 ⊆ dom 𝐹 ↔ ran 𝐺𝐴))
87biimpar 463 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐺𝐴) → ran 𝐺 ⊆ dom 𝐹)
9 dmcosseq 5525 . . . . 5 (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹𝐺) = dom 𝐺)
108, 9syl 17 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = dom 𝐺)
11103adant2 1125 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = dom 𝐺)
12 fndm 6130 . . . 4 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
13123ad2ant2 1128 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom 𝐺 = 𝐵)
1411, 13eqtrd 2805 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = 𝐵)
15 df-fn 6034 . 2 ((𝐹𝐺) Fn 𝐵 ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = 𝐵))
165, 14, 15sylanbrc 572 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wss 3723  dom cdm 5249  ran crn 5250  ccom 5253  Fun wfun 6025   Fn wfn 6026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-fun 6033  df-fn 6034
This theorem is referenced by:  fco  6198  fnfco  6209  fipreima  8428  updjudhcoinlf  8958  updjudhcoinrg  8959  cshco  13791  swrdco  13792  isofn  16642  prdsinvlem  17732  prdsmgp  18818  pws1  18824  evlslem1  19730  frlmbas  20316  frlmup3  20356  frlmup4  20357  upxp  21647  uptx  21649  0vfval  27801  xppreima2  29790  psgnfzto1stlem  30190  sseqfv1  30791  sseqfn  30792  sseqfv2  30796  volsupnfl  33787  ftc1anclem5  33821  ftc1anclem8  33824  choicefi  39910  fourierdlem42  40883
  Copyright terms: Public domain W3C validator