![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnco | Structured version Visualization version GIF version |
Description: Composition of two functions. (Contributed by NM, 22-May-2006.) |
Ref | Expression |
---|---|
fnco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6128 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | fnfun 6128 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
3 | funco 6071 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2an 583 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → Fun (𝐹 ∘ 𝐺)) |
5 | 4 | 3adant3 1126 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → Fun (𝐹 ∘ 𝐺)) |
6 | fndm 6130 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
7 | 6 | sseq2d 3782 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (ran 𝐺 ⊆ dom 𝐹 ↔ ran 𝐺 ⊆ 𝐴)) |
8 | 7 | biimpar 463 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐴) → ran 𝐺 ⊆ dom 𝐹) |
9 | dmcosseq 5525 | . . . . 5 ⊢ (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹 ∘ 𝐺) = dom 𝐺) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
11 | 10 | 3adant2 1125 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
12 | fndm 6130 | . . . 4 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
13 | 12 | 3ad2ant2 1128 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom 𝐺 = 𝐵) |
14 | 11, 13 | eqtrd 2805 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = 𝐵) |
15 | df-fn 6034 | . 2 ⊢ ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (Fun (𝐹 ∘ 𝐺) ∧ dom (𝐹 ∘ 𝐺) = 𝐵)) | |
16 | 5, 14, 15 | sylanbrc 572 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ⊆ wss 3723 dom cdm 5249 ran crn 5250 ∘ ccom 5253 Fun wfun 6025 Fn wfn 6026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-fun 6033 df-fn 6034 |
This theorem is referenced by: fco 6198 fnfco 6209 fipreima 8428 updjudhcoinlf 8958 updjudhcoinrg 8959 cshco 13791 swrdco 13792 isofn 16642 prdsinvlem 17732 prdsmgp 18818 pws1 18824 evlslem1 19730 frlmbas 20316 frlmup3 20356 frlmup4 20357 upxp 21647 uptx 21649 0vfval 27801 xppreima2 29790 psgnfzto1stlem 30190 sseqfv1 30791 sseqfn 30792 sseqfv2 30796 volsupnfl 33787 ftc1anclem5 33821 ftc1anclem8 33824 choicefi 39910 fourierdlem42 40883 |
Copyright terms: Public domain | W3C validator |